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ABSTRACT

Adaptation often involves the acquisition of a large number of genomic changes that arise as mutations
in single individuals. In asexual populations, combinations of mutations can fix only when they arise in
the same lineage, but for populations in which genetic information is exchanged, beneficial mutations
can arise in different individuals and be combined later. In large populations, when the product of the
population size N and the total beneficial mutation rate Ub is large, many new beneficial alleles can be
segregating in the population simultaneously. We calculate the rate of adaptation, v, in several models of
such sexual populations and show that v is linear in NUb only in sufficiently small populations. In large
populations, v increases much more slowly as log NUb. The prefactor of this logarithm, however, increases
as the square of the recombination rate. This acceleration of adaptation by recombination implies a
strong evolutionary advantage of sex.

IN asexual populations, beneficial mutations arising
on different genotypes compete against each other

and in large populations most of the beneficial muta-
tions are lost because they arise on mediocre genetic
backgrounds or acquire further beneficial mutations
less rapidly than their peers—the combined effects of
clonal interference and multiple mutations (Gerrish

and Lenski 1998; Desai and Fisher 2007). Exchange
of genetic material between individuals allows the com-
bination of beneficial variants that arose in different
lineages and can thereby speed up the process of ad-
aptation (Fisher 1930; Muller 1932). Indeed, most
life forms engage in some form of recombination, e.g.,
lateral gene transfer or competence for picking up
DNA in bacteria, facultative sexual reproduction in
yeast and plants, or obligate sexual reproduction in most
animals. Some benefits of recombination for the rate of
adaptation have recently been demonstrated experi-
mentally in Caenorhabditis reinhardtii (Colegrave 2002),
Escherichia coli (Cooper 2007), and Saccharomyces cerevisiae
(Goddard et al. 2005); for a review of older experiments,
see Rice (2002).

Yet the benefits of sex become less obvious when one
considers its disadvantageous effects: recombination
can separate well-adapted combinations of alleles and
sexual reproduction is more costly than asexual re-
production due to resources spent for mating and, in
some cases, the necessity of males. The latter—in
animals often termed the twofold cost of sex—implies
that sexual populations can be unstable to the invasion

of asexual variants. As a result, the pros and cons of sex
have been the subject of many decades of debate in
the theoretical literature (Crow and Kimura 1965;
Maynard Smith 1968; Felsenstein 1974; Barton

1995a; Barton and Charlesworth 1998), and several
different potentially beneficial aspects of sex have been
identified, including the pruning of detrimental mu-
tations (Peck 1994; Rice 1998) and host–parasite
coevolution or otherwise changing environments
(Charlesworth 1993; Ladle et al. 1993; Bürger 1999;
Waxman and Peck 1999; Gandon and Otto 2007;
Callahan et al. 2009). In the opposite situation of
relatively static populations, it has been proposed that
recombination is favored in the presence of negative
epistasis (Feldman et al. 1980; Kondrashov 1984,
1988)—a situation when the combined detrimental
effect of two unfavorable alleles is greater than the
sum of the individual effects. While this may sometimes
be a significant effect, most populations, especially
microbes, are likely to be under continuing selection
and the benefits of sex for speeding up adaptation are
likely to dominate.

The Fisher–Muller hypothesis is that sex speeds up
adaptation by combining beneficial variants. Moreover,
it has been demonstrated by Hill and Robertson

(1966) that linkage decreases the efficacy of selection.
This detrimental effect of linkage, known as the ‘‘Hill–
Robertson effect,’’ causes selection for higher recom-
bination rates, which has been shown by analyzing
recombination modifier alleles at a locus linked to two
competing segregating loci (Otto and Barton 1997;
Iles et al. 2003; Barton and Otto 2005; Roze and
Barton 2006; Martin et al. 2006). Hitchhiking of the
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allele that increases the recombination rates with the
sweeping linked loci results in effective selection for
increased recombination.

Experiments and simulation studies suggest that the
Hill–Roberston effect is more pronounced and selection
for recombination modifiers is stronger in large popula-
tions with many sweeping loci (Felsenstein 1974;
Colegrave 2002; Iles et al. 2003). However, the quanti-
tative understanding of the effect of recombination in
large populations is limited. Rouzine and Coffin have
studied the role of recombination in the context of
evolution of drug resistance in human immunodefi-
ciency virus, finding that recombination of standing
variation speeds up adaptation by producing anoma-
lously fit individuals at the high fitness edge of the
distribution (Rouzine and Coffin 2005; Gheorghiu-
Svirschevski et al. 2007). The effects of epistatic in-
teractions between polymorphisms and recombination
on the dynamics of selection have recently been analyzed
by Neher and Shraiman (2009). Yet none of these works
consider the effects of new beneficial mutations. In the
absence of new mutations (and in the absence of
heterozygous advantage that can maintain polymor-
phisms) the fitness soon saturates as most alleles become
extinct and standing variation disappears. Thus the
crucial point that must be addressed is the balance between
selection and recombination of existing variation and the
injection of additional variation by new mutations.

Here, we study the dynamics of continual evolution
via new mutations, selection, and recombination using
several models of recombination. Our primary models
most naturally apply when periods of asexual reproduc-
tion occur between matings, so that they approximate
the life style of facultatively outcrossing species such as
S. cerevisiae, some plants, and C. elegans, which reproduce
asexually most of the time but undergo extensive
recombination when outcrossing. The models enable
us to study analytically the explicit dependence of the
rate of adaptation and of the dynamics of the beneficial
alleles on the important parameters such as the out-
crossing rate and population size. In an independent
study N. H. Barton and J. Coe (personal communica-
tion) calculate the rate of adaptation for obligate sexual
organisms using several different multilocus models of
recombination, including the free recombination
model studied here. The relation of our work to theirs,
as well as to that of Cohen et al. (2005, 2006) who have
also studied the effects of recombination with multiple
new mutations, is commented on in the discussion.

When deleterious mutations can be neglected, the
rate of adaptation is the product of the rate of pro-
duction of favorable mutations NUb (N being the
population size and Ub the genomewide beneficial
mutation rate), the magnitude of their effect, and their
fixation probability. The fixation probability is domi-
nated by the probability that the allele becomes estab-
lished, i.e., that it rises to high enough numbers in the

population that it is very unlikely to die out by further
stochastic fluctuations. In a homogeneous population a
single beneficial mutation with selective advantage s has
a probability of establishment and eventual fixation of
Pe � s=ð1 1 sÞ � s (in discrete generation models,
Pe� 2s) (Moran 1959). In a heterogeneous population,
however, a novel beneficial mutation can arise on
different genetic backgrounds and its establishment
probability will thus vary, being greater if it arises in a
well-adapted individual. But even well-adapted genotypes
soon fall behind due to sweeps of other beneficial
mutations and combinations. To avoid extinction, de-
scendants of the novel mutation thus have to move to
fitter genetic backgrounds via recombination in out-
crossing events (Rice 2002). As a result the establishment
probability decreases as the rate of average fitness gain, v,
in the population increases. But the rate of average fitness
gain or, equivalently, the rate of adaptation itself depends
on the establishment probability. These two quantities
therefore have to be determined self-consistently.

In this article we analyze several models via self-
consistent calculations of the fixation probability of
new mutations. For a given production rate of beneficial
mutations NUb, we find that interference between
mutations is of minor importance if the recombination
rate r exceeds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4s2NUb

p
. In this regime, the rate of adap-

tion is v�NUbs2 as found for sequential mutations or
in the absence of linkage. At recombination rates below
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2NUb=logNUb

p

, however, v grows only logarithmically
with log NUb. We find this behavior in all our models and
argue that it obtains more generally. The prefactor of
the log NUb increases with the square of the recombi-
nation rate, implying a strong benefit of recombination
in large populations.

MODELS

We consider a population of haploid individuals with
fitness (growth rate), X, determined by the additive
effects of a large number of loci, each of which makes
small contributions to the fitness. We assume selection is
weak enough for the population dynamics to be de-
scribed by a continuous time approximation, that the
population size, N, is large enough that Ns?1, and that a
wide spectrum of fitnesses is present, characterized by the
fitness variance, s2, of the population. Individuals divide
stochastically with a Poisson rate 1 1 X � �X ðtÞ, where
�X ðtÞ is the mean fitness in the population, and they die,
also stochastically, with rate 1 [that is, we use the death
rate to set the unit of time and assume for convenience
that X � �X ðtÞ>1]. In addition to this asexual growth,
individuals outcross with rate r. Within our models,
outcrossing is an independent process decoupled from
division (but this does not substantively affect our results).

The primary model of mating that we study is free
recombination. In an outcrossing event two randomly
chosen parents are replaced by two offspring and each
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parental allele is assigned at random to one or the other
of the two offspring. This would be exactly correct if all
loci were on different chromosomes and can be a
reasonable approximation when the number of cross-
over sites is large, so pairs of substantially polymorphic
loci are likely to be unlinked at each mating. At the end,
we discuss briefly what happens when this approxima-
tion breaks down. When the number of polymorphic
loci is large and their contributions to X are of
comparable magnitude, the distribution of offspring
fitness is well described by a Gaussian distributed
around the value midway between the fitnesses of the
two parents and with variance s2/2 if loci are uncorre-
lated (Bulmer 1980): this is less than the s2 variance of
the parental population. Note that s2 is proportional to
the number of segregating alleles and represents the
extent of genetic variation in the adapting population.
It is not a fixed parameter of the model, but is calculated
self-consistently as a function of the population size and
the mutation and outcrossing rates.

In addition to the free recombination model de-
scribed above, we study two other models. The first is a
grossly simplified model of recombination in which a
randomly chosen individual is replaced by an individual
whose genome is assembled by choosing the alleles at
each locus according to the allele frequencies in the
entire population, independent of the ‘‘parents’’ (see
also N. H. Barton and J. Coe, personal communica-
tion). In this case recombinant offspring have fitness
distribution identical to the population distribution. It
turns out that this communal recombination model, even if
unrealistic, behaves similarly to the free recombination
model while being much easier to analyze mathemati-
cally: this makes it a good source of insight as well as
supporting the contention that the form of our results is
more general than the particular models.

The free recombination model, and even more so the
communal recombination model, overestimates the
amount of gene reassortment during outcrossing events
by assuming that all loci are simultaneously unlinked by
recombination to the same extent, independent of their
locations on the chromosomes. To study the effects of
more persistent genetic linkage, we also study a third
model in which only a single locus is exchanged with a
mating partner in an outcrossing event or, equivalently, is
picked up from DNA in the environment and randomly
replaces the initial allele at the same locus. This model is
reminiscent of lateral gene transfer among bacteria and
related to, but not the same as, the model studied by
Cohen et al. (2005). While this minimal recombination
model preserves the linkage of all but one locus at a time,
each locus is equally strongly linked to all other loci.
Thus this model does not approximate the position-
dependent crossing over of chromosomes.

The recombination processes in each of these models
are characterized by a rate, r, and a function, K(X, Y, t),
which is the distribution of offspring fitness Y, given a

parent with fitness X mated with a random member of
the population. Being the distribution of offspring
fitness, the recombination ‘‘kernel’’ is normalized
Ð

dYK ðX ;Y ; tÞ ¼ 1. Furthermore, since we ignore epista-
sis and assume that loci at intermediate frequencies are
in linkage equilibrium, recombination leaves the fitness
distribution P(X, t)dX of the population invariant
Ð

dXK ðX ;Y ; tÞPðX ; tÞ ¼ PðY ; tÞ. Within the free recom-
bination model, each outcrossing event replaces two
parents with two offspring. However, when following a
rare allele, we can focus on the lineage containing this
allele and ignore the fate of the other offspring. Matings
between two individuals with the same rare allele are
very infrequent and can be neglected. Since we are
interested in the effects of recombination, we primarily
focus on the limit r?s.

Branching process and establishment probability:
The key element determining the rate of adaptation is
the probability that a new beneficial mutation avoids
extinction and establishes in the population. The
establishment probability is the probability that the
allele survives random drift and rises to a sufficiently
large number so that its frequency in the population
grows deterministically (and eventually fixates). This
establishment occurs—if it does at all—when the popu-
lation of the allele is large but its frequency in the
population is still small. The fate of a new allele dur-
ing the stochastic phase, when it exists only in a small
fraction of individuals, can be described well by a
branching process that accounts for stochastic birth,
death, and, crucially, recombination events that move
some of its descendants from one genetic background
to another. The branching process takes place in a popu-
lation whose mean fitness is steadily increasing due to
beneficial mutations sweeping and fixing at other loci
and in other lineages. Ignoring the short-term effect of
mutations, the mean fitness, �X ðtÞ, increases with rate
v [ d �X ðtÞ=dt ¼ s2, where s2 is the (additive) variance of
the fitness. The dynamics of a novel beneficial mutation
linked to a spectrum of genomic backgrounds in a
population adapting with rate v are illustrated in Figure
1. To establish, its descendants have to switch repeatedly
to fitter genomic backgrounds. This general idea (see
Rice 2002 for review) applies to the accumulation of
beneficial as well as deleterious mutations.

The establishment probability at a time t � dt of
descendants of a genome of fitness X, defined as w(X, t�
dt), is simply related to that at time t,

wðX ; t � dtÞ ¼ wðX ; tÞ � dt½D 1 BðX ; tÞ1 r �wðX ; tÞ
1 dtBðX ; tÞð2wðX ; tÞ � wðX ; tÞ2Þ

1 dtr

ð

dYK ðX ;Y ; tÞwðY ; tÞ

ð1Þ

(Barton 1995b), where D ¼ 1 is the death rate and
BðX Þ ¼ 1 1 X � �X ðtÞ is the birth rate. After a division,
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either of the two offspring has a probability 1 � w of
extinction: hence 2w � w2 of at least one of these
offspring fixing. For a low-frequency allele conferring
additional fitness s on a genomic background with
fitness X, we have B ¼ 1 1 X � �X ðtÞ1 s.

In a sufficiently large population the adaptation
process will proceed in a steady manner, leading to a
fitness distribution of constant width translating to-
ward higher fitness as a ‘‘traveling wave’’ (Tsimring

et al. 1996) with the velocity set by the rate of increase of
the mean fitness v ¼ ðd=dtÞ �X ðtÞ. We make the ansatz
that the distribution of fitnesses of the population
around its mean �X ðtÞ does not fluctuate substantially
and that the distribution is close to Gaussian. These are
analogous to ‘‘mean-field’’ approximations that must
be justified a posteriori. We expect that such approx-
imations will become valid for sufficiently large pop-
ulations, but how this occurs and how large the
population must be are not clear a priori: we discuss
this below.

In the traveling-wave population, the establishment
probability depends on time only via �X ðtÞ. Hence
we measure fitness relative to �X ðtÞ ¼ vt, defining
x [ X � �X ðtÞ, and seek an otherwise time-independent
solution of the form w(x) ¼ w(X � vt) ¼ w(x, t). [The
properties of w(X, t) and K(X, Y, t) do not change by this
shift of variables other than becoming time indepen-
dent relative to a moving reference �X ðtÞ. We therefore
use the same symbols for w(x) and K(x, y) in the moving
frame.] Using @tw(X � vt) ¼ � v@xw(x), the establish-
ment probability, w(x), then obeys

v@xwðxÞ ¼ r

ð

dyK ðx; yÞwðyÞ1 ðx 1 s � rÞwðxÞ

� ð1 1 x 1 sÞwðxÞ2: ð2Þ

In many cases of interest, selection is important only on
timescales much longer than the generation time. In
that case x 1 s in the prefactor of the quadratic term is
negligible compared to the inverse generation time,
which is 1 in our units. Equation 2 then simplifies to

ðv@x � x 1 r ÞwðxÞ � r

ð

dyK ðx; yÞwðyÞ ¼ swðxÞ � wðxÞ2:

ð3Þ

We have written this in a suggestive form. The left-hand
side of Equation 3 defines the linear operator J acting
on w(y). At very high recombination rates, we will obtain
that w(x)� (1 1 2x/r), which is almost independent of x
for x>r. In this limit, the J acting on w(y) vanishes and
the population average establishment probability is
just the solution to the right-hand side, giving simply
w(x)� s. This is the conventional result (obtained by
the simple branching process) in the absence of linkage
to the rest of the genome. More generally, the fixa-
tion probability of a new mutation that can arise in any
individual is the population average of the x-dependent
establishment probability over the approximately Gauss-
ian distribution of the fitness, x :

Pe �
ð

dx
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p e�x2=2s2

wðxÞ: ð4Þ

Equation 3 has an important property. Its left-hand side
is zero upon averaging with respect to the population
distribution PðxÞ ¼ e�x2=2s2

=
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p

[as is readily con-
firmed by direct integration using v ¼ s2 and
Ð

dxK ðx; yÞPðxÞ ¼ PðyÞ, see above]. This property origi-
nates from the fact that in the deterministic limit
(without the additional mutation, s), the population
dynamics have P(X, t) ¼ P(X � vt) ¼ P(x) as a traveling-
wave solution (Rouzine and Coffin 2005)—the initial
rationale for assuming a Gaussian form. As a conse-
quence, averaging Equation 3 yields a ‘‘solvability
condition’’

ð

dx
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p e�x2=2s2ðswðxÞ � wðxÞ2Þ ¼ 0; ð5Þ

which, when combined with Equation 4, provides
another expression for the establishment probability:

sPe ¼
ð

dx
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p e�x2=2s2

wðxÞ2: ð6Þ

This equation together with Equation 3 describes the
‘‘surfing’’ of a beneficial allele (and far more often its
drowning!)—the processes illustrated by Figure 1—
under the assumption that the distribution of fitness

Figure 1.—A novel mutation needs to recombine onto fit-
ter genetic backgrounds to become established and eventu-
ally fix. (A) The distribution in fitness of the population
moves toward higher fitness with velocity v ¼ s2. The new mu-
tation, illustrated by the black bars, has to switch backgrounds
by recombination to keep up with the moving wave of the
population fitness distribution. (B) Initially, the novel muta-
tion is present on a single genetic background with fitness
X0, struggling not to go extinct. Recombination can transfer
the mutated allele onto a new background, e.g., from X0 to X1,
and spawn a daughter clone that starts an independent strug-
gle against extinction. The mutation establishes if at least one
branch survives indefinitely. The complementary case of an
unsuccessful mutation is shown: all branches die out. The
probability of establishment, w(X, t), depends on the fitness
X of the genome in which the mutation arose and is a solution
to Equation 2.
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in the population is sufficiently close to Gaussian. The
latter holds when the large number of alleles at different
loci are only weakly correlated: we justify this ansatz below.

Models of recombination: The recombination kernel
K(x, y) depends on the recombination model. For the
free recombination model, the fitness of the offspring
resulting from a mating of two parents with fitness x
and z is again Gaussian distributed with mean (x 1 z)/2
and variance s2/2. Averaging over the fitness z of the
mate, which is Gaussian distributed with variance s2,
results in the recombination kernel

K ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2

3ps2

r

e�2ðy�ðx=2ÞÞ2=3s2
: ð7Þ

In the communal recombination model, the fitness of the
recombinant is a random sample from the population
(assuming Gaussianity and linkage equilibrium). In that
case, we have

K ðx; yÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p e�y2=2s2

; ð8Þ

i.e., the recombination kernel becomes independent of
x and Equation 3 becomes mathematically much simpler.

Within the minimal recombination model, the probability
per unit time of any particular locus being transferred is
r and the sections are assumed small enough that they
contain at most one segregating locus. From the point
of view of a single mutation, there are two processes:
either it can be transferred to another genome, which is
effectively like the recombination process in the com-
munal recombination model, or other sections can be
transferred into its genome, gradually changing its
fitness. With small sections transferred the fitness of
the genome undergoes a random walk with bias toward
the average fitness. The corresponding recombination
operator is then

r

ð

dyK ðx; yÞwðyÞ

¼ r

ð

dy
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p e�y2=2s2

wðyÞ1 r s2d2w

dx2 � x
dw

dx

� �

: ð9Þ

This form of the recombination operator is derived in
appendix c. Note that for the minimal recombination
model the recombination operator acting on P(x) is
different from the adjoint operator acting on w(y).

RESULTS

Fixation probability and rate of adaption: To calcu-
late the rate of adaptation, we solved Equation 3 and
obtained expressions for the average fixation probabil-
ity Pe of a beneficial mutation, which is of the form
Pe ¼ speðr̃; s̃ Þ, where s̃ ¼ s=s and r̃ ¼ r=s are the selec-
tive advantage of the beneficial mutation and the out-

crossing rate rescaled by the to-be-determined width of the
fitness distribution s. The expression for Pe is used later to
calculate s2 in a self-consistent manner. The derivation of
the expressions for Pe in the different models are given in
the following section. In the limit s>r , our primary focus,
we find for the free recombination model

pe

�r

s
;

s

s

�

¼

s2logðcr=sÞ
sr

ffiffiffiffiffiffi

2p
p e�ðs

2=2r 2Þlog2ðcr=sÞ s>r>s

s

s
1� 4

s2

r 2 1 . . .

� �

r?s

8

>

>

<

>

>

:

ð10Þ

with c a coefficient. [Note that in the limit of very small s,
s , exp(�cr2/s2), the expressions break down. This is
unlikely to be relevant in practice.] At small r, the
fixation probability decreases very rapidly with decreas-
ing r. This stems from the fact that mutations in
individuals from the high fitness tail of the Gaussian
fitness distribution have an exponentially greater
chance of fixing than those in the bulk. At large r, by
contrast, the genetic background on which the muta-
tion arises plays only a minor role, since the rate of
switching background is larger than the selection differ-
entials. While starting out on a fit background gives a
mutation a slight advantage, mutations on any back-
ground have a significant chance of fixing. For large r,
the result for Pe is therefore given by small perturbations
of the result without background interference: Pe � s.

The expressions for Pe presented above depend on
the variance in fitness s2. In an evolving population the
variance is not a free parameter. When the effects of
mutation on the bulk of the fitness distribution can be
neglected, as they can here, the variance is equal to the
rate of adaptation, v. The rate of adaptation, in turn, is
given by the product of the rate at which beneficial
mutations enter the population NUb, the magnitude of
their effect s, and their probability of fixation:

v ¼ NUbsspe

�r

s
;

s

s

�

¼ s2: ð11Þ

The rate of adaptation, v, can therefore be obtained by
solving self-consistently for s in the above equations.
Substituting our result for Pe and ignoring logarithmic
factors in the arguments of large logarithms, we find, for
the free recombination model,

v �
2s2 r

s

� �2 logNUb

log2r=s
1>r 2

s2 > NUb
logNUb

NUbs2 1� 4NUbs2

r 2 1 . . .

� �

r 2

s2 ?4NUb:

8

>

>

<

>

>

:

ð12Þ

Contrary to intuition, v is proportional to log NUb rather
than NUb both for low r at fixed NUb?1 and at fixed r
for sufficiently large populations sizes, N. This indicates
that the interplay between mutations—especially their
collective effects on fluctuations—is limiting the rate
of adaptation (Gillespie 2001). As in the asexual case,
because of interference between mutations, only a small
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fraction �log(NUb)/NUb of the beneficial mutations
fix—the rest are wasted. However, this fraction increases
with increasing rate of recombination leading to v
increasing as �r2logNUb, until it saturates at NUbs2,
which is the limit of independently fixating mutations.
In this high recombination limit, the rate of adaptation
is limited simply by the supply of beneficial mutations
NUb. Very similar results for the dependence of v on r
and N are obtained for the communal recombination
model, differing only by coefficients inside logarithms
and by correction terms.

In the minimal recombination model, for which only one
locus is exchanged at a time, the behavior is slightly
different. For the fixation probability, we find

Pe � e�s2=2r 21ss2=r 3
: ð13Þ

In contrast to the other models for which recombina-
tion results in a macroscopic change of the genotype,
the minimal recombination model changes only one
locus at a time. This results in a slightly weaker de-
pendence of Pe on the recombination rate for r?s. Self-
consisting the fitness variance as before determines the
speed of adaptation to be

v � 2r 2logðNUbÞ 1 1
2s

r

� �

: ð14Þ

Surprisingly, this result in essentially independent of s
for r?s: the larger increase in the fitness per sweep is
almost perfectly canceled by the decrease in establish-
ment probability. Note that this model is defined with
recombination rate r per locus so that the total number
of recombinations in time 1/r is far more than in the
other models. But the time for turnover of the genome
and loss of linkage is of order 1/r and thus r is the use-
ful quantity to compare with the other models.

Simulations: In writing down Equation 3 for the
establishment probability of a beneficial mutation, we
have assumed that the distribution of fitness in the

population is Gaussian and that correlations and
fluctuations are negligible. Thus it is useful to compare
the analytic results to individual-based simulations of an
evolving population. In our simulations, we use a
discrete generation scheme, where each individual
produces a Poisson-distributed number of gametes with
parameter expðX � �X 1 aÞ. The population size, Ñ, is
kept approximately constant with an average of N by
adjusting the overall rate of replication through
a ¼ ð1� Ñ=N Þlog 2. Each individual is represented by
a string of integers, where each bit represents one locus.
Recombination, approximating the free recombination
model, is implemented as follows: each generation,
gametes are randomly placed into a pool of asexual
gametes with probability 1 – r and into a pool of sexual
gametes with probability r. The asexual gametes are
placed unchanged into the next generation. The sexual
gametes are paired at random and their genes reas-
sorted to produce haploid offspring. Whenever one
locus becomes monomorphic—via fixation or extinc-
tion of an allele—, one individual is chosen at random
and a mutation is introduced at that specific locus. This
allows us to make optimal use of the computational
resources by keeping as many polymorphic loci as
possible. However, this scheme renders the beneficial
mutation rate, Ub, a dependent quantity, which, as
shown in Figure 2, increases with L and decreases with
r. The effective total rate for new beneficial mutations,
NUb, can be determined simply by measuring the
average rate at which the new mutations are introduced
(which, the way the simulations are done, is the sum of
the extinction and fixation rates).

Figure 2 shows the mean establishment probability as
a function of the outcrossing rate r, for different values
of L, which is roughly proportional to NUb (see above).
The establishment probability is small at small r but
increases sharply and saturates at high r at Pe ¼ 2s—the
usual single-locus result. The upturn of Pe occurs at
larger r for larger NUb, in accord with the prediction

Figure 2.—Fixation probabilities in re-
combining populations. (A) The mean fix-
ation probability normalized to the value
in the high recombination limit as a func-
tion of r for three different genome sizes L
(with s ¼ 0.002, N ¼ 20,000). The effective
rate of beneficial mutations NUb is shown
in the inset (see main text). The scaled
fixation probability in the simulation
(solid lines) is calculated as v/2NUbs2

and compared to the analytic results
for the scaled establishment probability
Pe(r, s)/s (dashed lines). The latter are ob-

tained through numerical solution of Equation 3, using s2 observed in simulations. The agreement between simulations and the
analytic approximation improves with increasing L, i.e., increasing NUb, as expected. (B) The scaled fixation probability as a func-
tion of the rescaled background fitness x/s (relative to the mean). The solid lines are simulation results for w(x)/2s using L ¼
6400 and r¼ 0.512, 0.128, 0.064, and 0.032: the corresponding values of the key ratio r/s, which determines the shape of w(x), are
indicated. The dashed lines are predictions for w(x)/s obtained via numerical solutions of Equation 3. Note that the simulation
data become noisy when the frequency of x in the population is �1/N.
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that the high recombination limit is reached when r
substantially exceeds s. The agreement between the
analytic predictions in the Gaussian ansatz (via numer-
ical solution of Equation 3) and the simulation im-
proves as NUb increases, suggesting that, as we expect,
the approximations used become valid for large pop-
ulations. Note, however, that the corrections to the
asymptotic results are quite large as the basic small
parameter of the Gaussian ansatz is inversely propor-
tional to log(NUb). Figure 2B shows w(x), i.e., the
establishment probability of a mutation arising on
background x, measured in simulations together with
the predictions obtained from numerical solution of
Equation 3. At outcrossing rates much larger than s, the
fixation probability increases only slightly with the
background fitness and all new mutations have a sub-
stantial chance—of order s—to establish. With decreas-
ing r/s, the establishment probability becomes a
steeper function of the background fitness and only
those mutations arising on high fitness backgrounds
have a significant chance of establishment. Note that at
r/s � 1, w(x) measured in simulations decays less
rapidly at small x than the solution of Equation 3. These
deviations are probably due to fluctuations of the high
fitness edge and the width of the distribution, which are
ignored in the analysis. However, as discussed below,
such fluctuations decrease with increasing NUb as long
as r?s.

ANALYSIS OF ESTABLISHMENT PROBABILITY

We now turn to a derivation of the results given for the
establishment probability in Equations 10 and 13, which
requires solving Equation 3. We first study the case of
s>r>s applicable, as we shall see, for very large
populations. We proceed by analyzing Equation 3 in
different regimes of x. At large positive x � r?s, the
equation reduces to (x � r)w(x) � w2(x) with solution
w.(x) � x � r, as illustrated in Figure 3. In this regime,
w(x) is independent of the recombination model and
is simply given by the establishment probability of a
mutation in the absence of any gains from recombina-
tion (but with the clonal growth rate reduced by r due
to recombination). Establishment is driven by clonal
expansion and contributions from recombination are
negligible. (But we shall see that there are almost no
individuals in the population with such high fitness.) In
the opposite regime, at large negative x, w(x) is small
and the quadratic term, as well as the perturbation
sw(x), can be neglected. The resulting linear equation
for w,(x) valid for small x is

ðv@x � x 1 rÞw
,
ðxÞ � r

ð

dyK ðx; yÞw
,
ðyÞ ¼ 0: ð15Þ

In this regime, the solution depends sensitively on
the recombination model. This is intuitive, since the

only—and very unlikely—way for a mutation at x>0 to
fix is to recombine onto better backgrounds. We verify
below for each model separately that the crossover from
the linear regime, w,(x), to the saturated behavior at
large x, w.(x), occurs rather sharply around
x=s ¼ Q?1. At intermediate s , x , sQ, the estab-
lishment probability w,(x) increases steeply (while
remaining small enough for the quadratic term to
remain negligible). Individuals in this intermediate
regime are much fitter than the average individual so
that recombination usually leads to less fit offspring.
Hence the recombination term is of secondary impor-
tance in this range and w,(x) is governed by the first
term in Equation 15. The solution to Equation 15 is
therefore of the form w , ðxÞ ¼ fðxÞeðx�r Þ2=2s2

, where
f(x) is a slowly varying function that depends on the
recombination model. This behavior can be interpreted
in terms of the dynamics of a genotype with initial fitness
x. The genotype will expand clonally with rate x � r,
giving rise to nx � eðx�r Þt�vt2=2 unrecombined descend-
ants after t generations. Since each of these could give
rise to a lineage that will fix, in this regime w(x) is
proportional to

Ð

nxðtÞdt, which increases rapidly with x.
This is valid up to just below the crossover where the
quadratic term, w(x)2, starts to be important; see Figure 3.

Note that the amplitude of w,(x) is left undeter-
mined by the homogeneous linear Equation 15 and
hence the location Q of the crossover is not fixed. To
ensure that w(x) solves the complete Equation 3, we

Figure 3.—Asymptotics of the establishment probability.
The fitness distribution P(x) of the population is shown in
black, and a sketch of the establishment probability, w(x), is
shown in red for r>s. At low x, w(x) is small and depends sen-
sitively on the recombination model; at intermediate s , x ,
sQ, w(x) increases sharply as � eðx�rÞ=2s2

, modulated by a
slowly varying function f(x) that depends on the recombina-
tion model. At still larger x, beyond sQ, the quadratic term in
Equation 3 becomes important, forcing w(x) to saturate at x�
r. The width of the crossover region is of the order of s/Q.
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need to impose the solvability condition Equation 5 as
an additional constraint. The solvability condition
involves the first and second moment of w(x) with
respect to the fitness distribution P(x). The first mo-
ment is dominated by small and intermediate x since
P(x)w(x) decreases with x. The second moment, how-
ever, is dominated by a narrow range of width �
s=Q>s around the crossover point sQ: for x�sQ,
P(x)w,(x)2 increases rapidly with x, while P(x)w.(x)2

decreases rapidly. The solvability condition (5) then
becomes

sPe �
sQ
ffiffiffiffiffiffi

2p
p e�Q2=2; ð16Þ

giving us a relation between Pe and Q. To analyze the
behavior of the various models it is convenient to rescale
the rates and fixation probabilities as

x ¼ x

s
; r̃ ¼ r

s
; s̃ ¼ s

s
; and w̃ðxÞ ¼ wðxsÞ

s
: ð17Þ

Utilizing the transform,

VðzÞ[
ð‘

�‘

dx
ffiffiffiffiffiffi

2p
p e�ðx�zÞ2=2w̃ðxÞ; ð18Þ

turns out to be informative: note that the scaled fixation
probability is pe [ Pe/s ¼ V(z ¼ 0). By integrating the
rescaled Equation 3 over the kernel ð1=

ffiffiffiffiffiffi

2p
p

Þe�ðx�zÞ2=2,
we obtain an equation for V(z) of the form

LV ¼
ð‘

�‘

dx
ffiffiffiffiffiffi

2p
p e�ððx�zÞ2=2ÞJ w̃ðxÞ

¼ s̃ VðzÞ �
ð‘

�‘

dx
ffiffiffiffiffiffi

2p
p e�ðx�zÞ2=2w̃ðxÞ2; ð19Þ

which defines for each model a linear operator L acting
on V(z) (J is the linear operator defined by the left-
hand side of Equation 3). The integral over w̃ðxÞ2 is
again dominated by the crossover region and can be
evaluated using w̃ðQÞ � Q and the (scaled) crossover
width �Q�1:

LV � s̃ VðzÞ � Q
ffiffiffiffiffiffi

2p
p e�ðQ�zÞ2=2 ¼ s̃ VðzÞ � s̃ Vð0ÞeQz�z2=2:

ð20Þ

The last step was obtained by substituting Equation 16.
The condition that the solution w̃ ,ðxÞ joins smoothly
to the saturated solution w̃ .ðxÞ and hence grows slowly
only for large x translates into the condition that V(z)
does not diverge at any fixed z: it should be an analytic
function of z. We now examine separately the different
models, the simplest first.

Communal recombination model: In the communal
recombination model, the genotypes of offspring are
independent of their parental fitness, which makes this
model particularly simple. It can, in fact, be solved
exactly, as shown in appendix a, or, in the regimes of

interest, by matched asymptotic expansions. But it is
more instructive to proceed with the approximate but
more general and asymptotically exact analysis outlined
above. The equation for V(z) reads

LCV [ ðr̃� zÞVðzÞ � r̃pe ¼ s̃ VðzÞ � s̃ Vð0ÞezQ�z2=2;

ð21Þ

which can be solved trivially. But in general it has a pole
at z ¼ r̃� s̃. This pole has to be canceled, since we know
that w̃ðxÞ saturates at x ¼ Q and V(z) cannot develop a
singularity. Hence, we must have eQðr̃�s̃Þ�ðr̃�s̃Þ2=2 ¼ r̃=s̃ to
eliminate the pole. Solving for Q and substituting it into
the solvability condition (16) yields

pe �
logðr̃=̃s Þ

s̃ ðr̃� s̃ Þ
ffiffiffiffiffiffi

2p
p e�ðlogðr̃=s̃Þ1ðr̃�s̃Þ2=2Þ2=2ðr̃�s̃Þ2

� logðr̃=̃s Þ
s̃ 1=2r̃ 3=2

ffiffiffiffiffiffi

2p
p e�log2ðr̃=s̃Þ=2r̃ 2

: ð22Þ

The last approximate equality is correct to leading order
in s̃=r̃ > 1.

Free recombination model: In the free recombina-
tion model, the offspring obtains on average half of its
genome from either parent. The parent carrying the new
allele mates with a random member of the population:
thus after recombination the average fitness of the
genotype carrying the new allele is half as far from the
population mean fitness as it was before recombination.
As a result of this correlation between parents and
offspring, the operator LI for the free recombination
model is more complicated and couples V(z) to V(z/2),

LIV [ ðr̃� zÞVðzÞ � r̃ Vðz
2
Þ � s̃ VðzÞ � s̃ Vð0ÞezQ�z2=2;

ð23Þ

where, as before, pe¼V(0). Neglecting the e�z2=2 � 1 on
the right-hand side (we need to consider only z>1 since
r̃ >1), we can analyze this as a power series in z, writing
VðzÞ ¼

P

n Vnzn , finding

Vn

V0
¼
Y

n

k¼1

1

r̃� s̃� r̃ 2�k � s̃
X

n

j¼1

Qj

j !

Y

n

k¼j

1

r̃� s̃� r̃ 2�k : ð24Þ

As the first part would yield ratios of successive terms
that approach 1=ðr̃� s̃ Þ for large n and again induce a
pole at z ¼ r̃� s̃, this has to be canceled by the second
inhomogeneous term. The condition for convergence
(up to well beyond the ‘‘almost pole’’ at r̃� s̃ ) is that
Vnðr̃� s̃ Þn/0 for n / ‘, which requires that

1 ¼ s̃
X

‘

j¼1

Qj

j !

Y

j�1

k¼1

ðr̃� s̃� r̃ 2�kÞ � eQðr̃�s̃ Þs̃

r̃

Y

‘

k¼1

ð1� 2�kÞ:

ð25Þ

The last approximate equality is accurate when s̃ >r̃
and hence Qðr̃� s̃Þ?1. Thus we must have
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Q � logðcr̃=s̃Þ
r̃� s̃

ð26Þ

with the order-unity coefficient c ¼ 1=
Q‘

k¼1ð1� 2�kÞ.
We thus obtain pe very similar to the communal re-
combination model,

pe �
logðcr̃=s̃Þ

s̃ ðr̃� s̃Þ
ffiffiffiffiffiffi

2p
p e�log2ðcr̃=s̃Þ=2ðr̃�s̃Þ2 : ð27Þ

Note that V(z) is approximately the Laplace transform
of fðxÞ ¼ w̃ðxÞe�x2=2, which can be analyzed perturba-
tively for small r̃; see appendix b. This expansion in r̃
reveals the most probable—least unlikely—path of a
mutation on a typical initial background to successively
better backgrounds and establishment.

Minimal recombination model: The minimal recom-
bination model can be analyzed similarly: LT is now a
differential operator, and we have

LT V [ ðr̃� zÞV� r̃pe 1 r̃ z
dV

dz
� s̃ V� s̃ Vð0ÞezQ: ð28Þ

This can be explicitly integrated and the behavior for
1?z .Oðr̃ Þ found to involve linear combinations of
ez=r̃ and ezQ. For s̃ >r̃, the condition that the solution
matches correctly onto the nonlinearly saturated form
for x�Q can be shown to be that these two exponentials
are almost the same. This yields the condition Q � 1=r̃.
In contrast to the other models, s̃ gives corrections only
to Q. The fixation probability is then found to be

Pe � e�1=2r̃ 21s̃=r̃ 3
; ð29Þ

which yields a different form for the speed of evolution:

v � 2r̃ 2logðN mÞð1 1
2s̃

r̃
Þ: ð30Þ

High recombination rates: In the limit of high
recombination rate, the crossover to the saturated
solution w̃ ,ðxÞ occurs far out in the ‘‘nose’’ (high fitness
tail) of the population distribution—farther out than
any individuals are likely to be. In this regime, the
assumption that

Ð

dxe�x2=2w̃ ðxÞ2 is dominated by the
crossover region is no longer justified.

To analyze this high r regime, we can make use of the
expansion of VðzÞ ¼

P

n znVn , which is equivalent to
expanding w̃ðxÞ in Hermite polynomials w̃ðxÞ ¼
P

n VnHnðxÞ, where the HnðxÞ ¼ ð�1Þnex2=2@n
x e�x2=2. In

the limit of r̃ ?s̃, the second term in Equation 24 can be
neglected for the first few coefficients and we have
Vn=V0 ¼

Qn
l¼1ð1=r̃ ð1� 2�lÞÞ (for the communal re-

combination model we have Vn=V0 ¼ r̃ �n). The value
of V0 ¼ pe has to be determined by the solvability
condition s̃pe ¼

Ð

dx=
ffiffiffiffiffiffi

2p
p

e�x2=2w̃ðxÞ2. From the orthog-
onality of the Hermite polynomials one finds that the
right-hand side is simply

P

n n!V2
n. Hence, we find for

the fixation probability the formal expression

pe ¼ V0 ¼ s̃ 1 1
X

n¼1

n!
Y

n

l¼1

1

r̃ 2ð1� 2�l Þ2

 !�1

: ð31Þ

The n! would cause the sum to diverge if it extended to
infinity. But for large r̃, this is a valid asymptotic series,
which can be truncated at any finite number of terms.
To zeroth order, one finds in both models Pe ¼ ss̃ ¼ s,
which is simply the result in a homogeneous population.
Including the first two nontrivial correction terms, one
finds

Pe ¼ s 1� 4r̃ �2 1
16

9
r̃ �4 1 . . .

� �

free recombination model

Pe ¼ sð1� r̃ �2 � r̃ �4 1 . . . Þ communal recombination model:

ð32Þ

(Note that the divergence of the expansion for large n,
for which this approach breaks down, is related to the
singular dependence of pe on 1=r̃ for small r̃ discussed
above.) For the minimal recombination model, the
behavior for large r is similar and the expansion in
inverse powers of r̃ can be analyzed; we do not carry this
out here.

Range of validity of analysis: Throughout the anal-
ysis, we have assumed that the fitness distribution of
individuals in the population, Pðx ¼ X � �X ðtÞÞ, is
Gaussian and also that of recombinant offspring.
Crucially, for the analysis, we assumed that it remains
Gaussian in the high-fitness nose of the distribution all
the way to the crossover point Q that controls the
establishment probabilities. We need to justify this ansatz.
First, as noted earlier, we observe that a Gaussian fitness
distribution is the exact traveling-wave solution to the
linear recombination model in the absence of fluctua-
tions: the Gaussian approximation should thus be valid
throughout the bulk of the distribution in the limit of
very large populations. Second, in the absence of
fluctuations (or epistatic interactions that we are ignor-
ing in any case) the frequencies of alleles at different loci
are independent. And third, if the establishment proba-
bilities of different beneficial mutations are independent,
then it can be shown that the resulting Poisson process
of the establishments together with random combining
of the alleles with their corresponding frequencies leads
to a distribution of fitnesses whose logarithm averaged
over the establishment times, logðPðxÞÞh i, is exactly
parabolic—corresponding to a Gaussian distribution.
However, due to fluctuations andcorrelations, the distribu-
tion of fitnesses will be neither exactly Gaussian nor exactly
time independent and we must check that the nonfluc-
tuating Gaussian is a good enough approximation far
enough out in the nose in the large N regimes of interest.

We first check that the sampling of the distribution
due to the finite population size is sufficient. A
population of size N samples a close-to-Gaussian distri-
bution only out to �s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log N
p

ahead of the mean. But
this implies that, with the fitnesses of individuals only
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weakly correlated, the crossover region near Q is indeed
well sampled by the population since

Q � s
logcr=s

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log NUb

p

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 log N
p

: ð33Þ

The last inequality is valid when the rate of beneficial
mutations per genome per generation, Ub, is small as is
surely always the case: there are then of order 1/Ub

individuals in the population with fitnesses in the
crucial crossover region of the establishment probabil-
ities. Furthermore, the Gaussian shape of the fitness
distribution will be a good approximation when the
number of polymorphic loci that contribute substan-
tially to the fitness variance is large. However, the total
number of established polymorphic loci is dominated
by low-frequency alleles. (The total number of poly-
morphic loci is much higher still, but almost all of these
are not established and destined to soon go extinct.)
Nevertheless, there are sufficiently many polymorphic
sites with high enough frequencies that they contribute
substantially to the fitness distribution. Since sweeps
occur at rate v/s and since a sweeping allele is at
intermediate frequencies for a few times 1/s genera-
tions, the number of loci, K, contributing substantially
to the variance is of order v/s2 � (r/s)2log(NUb). For
r?s these K loci are approximately in linkage equilib-
rium, giving rise to a Gaussian fitness distribution with
corrections to parabolic log(P(x)) of order (x/s)2/K. At
the crossover point, sQ, it can then be checked that the
corrections to P(x) are small as long as r?s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logNUb

p

.
We thus expect that this is the condition for validity of
the Gaussian ansatz from which our analytic predictions
are obtained. A more detailed analysis of the effects of
fluctuations, in particular in the crucial nose of the
distribution, is left for future work.

DISCUSSION

We have analyzed in several simple models the
dependence of the speed of adaptation on the rate of
recombination and the population size, focusing on
the particularly interesting behavior in the wide range
of outcrossing rates s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logNUb

p

>r , s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NUb=logNUb

p

or,
equivalently, on population sizes NUb?ðr 2=s2Þlogðr=sÞ.
In the high recombination limit and moderate N
the conventional analysis of independent fixations
holds and the rate of adaptation (and concomitantly
the variance of fitness) is proportional to the total
production rate of beneficial mutations, NUb. In con-
trast, for large populations (with recombination rates
in the intermediate regime) we find adaptation rate
v � r2logNUb. This change from linear to logarithmic
dependence on NUb indicates that the rate of adapta-
tion is limited by interference among multiple simulta-
neously segregating beneficial mutations rather than by
the supply of beneficial mutations. This reduction in the

rate of adaptation due to linkage is, qualitatively, the
Hill–Robertson effect (Hill and Robertson 1966).
Most interestingly, while logarithmic in population
size, the rate of adaptation increases with the rate of
recombination as r2. Hence our results confirm the
heuristic arguments by Fisher and Muller and provide a
quantitative framework for identifying conditions favor-
ing sexual reproduction (Barton and Charlesworth

1998; Rice 2002).
The rate of adaptation is determined by the dynamics

of the linkage between new beneficial alleles and the
spectrum of fitnesses of the rest of the genome. This
results in most new mutations being eliminated by their
linkage to modestly fit genomes that rapidly lose out
with respect to the steadily increasing average fitness
driven by the anomalously fit genomes. Only those
alleles that either arise on very fit genomes or are lucky
enough to recombine to make a very fit genome will
survive long enough for their frequency to grow de-
terministically and sweep through the population. The
logarithmic dependence on population size is similar to
that found for purely asexual evolution when multiple
beneficial mutations are present in the population
(Desai and Fisher 2007). But with r . s, recombination
speeds up the adaptation by allowing new mutations
that arise on modestly fit backgrounds to recombine to
very fit backgrounds and thereby fix.

We have shown that the typical number of simulta-
neously segregating alleles at intermediate frequencies
is on the order of K � r2/s2 log NUb. For r?s, the
number of possible combinations of these sweeping loci
therefore dramatically exceeds the population size. This
implies that the limit of ‘‘infinite’’ population size, for
which each genotype is well sampled, is unattainable at
fixed recombination and beneficial mutation rate. On
the contrary, sampling becomes sparser and the benefits
of recombination more pronounced in larger popula-
tions. The population size dependence of the beneficial
effects of recombination has been a subject of consider-
able theoretical debate (Crow and Kimura 1965;
Maynard Smith 1968; Barton and Otto 2005). The
increased advantage of sexual reproduction in large
populations has been demonstrated in model simula-
tions by Iles et al. (2003). It has also been observed
experimentally by Colegrave (2002), who studied this
phenomenon in an evolution experiment with C.
reinhardtii.

Relationship to other recent work: The description
of the spread of beneficial alleles in space as a traveling
wave goes back to Fisher (1930). The notion that adap-
tation of a panmictic population can be described as
a traveling wave in fitness was introduced by Kepler

and Perelson (1995) and Tsimring et al. (1996). In
these effectively deterministic models, the velocity of the
pulse is determined by the size of the population through
a modification of the deterministic solution at the high
fitness edge—the nose or ‘‘front’’—to approximate the
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crucial stochastic behavior near the nose (Brunet and
Derrida 1997). These concepts were applied to recom-
bining populations by Rouzine and Coffin (2005) and
Gheorghiu-Svirschevski et al. (2007), who studied the
rate of (transient) adaptation when selection acts on
standing variation. Cohen et al. (2005, 2006) studied
continuing evolution with a large supply of beneficial
mutations available in a model that is related to our
‘‘minimal recombination’’ model. Both approaches
focused on the overall distribution of fitnesses within
the population and the primary role of recombination
they considered was to maintain a near Gaussian shape
of the fitness distribution, achieved by producing
higher-fitness individuals and thereby advancing the
nose. Some of the results of the approximate analytic
treatments are related to ours, including the log N
scaling of the adaptation speed in certain regimes. Yet
the actual underlying dynamics implicit in the approx-
imations used are very different from what we find here
and so is the dependence on parameters.

The key feature of the adaptation with substantial
rates of recombination is the stochastic dynamics of new
mutations. The probability that a new beneficial muta-
tion will sweep to fixation is determined by its establish-
ment probability: the probability that it escapes
stochastic extinction. The establishment probability
depends very strongly on the distribution of fitnesses
of the genetic backgrounds with which the new muta-
tion can be linked. As the distribution of fitness depends
on the velocity, the steady-state velocity must be de-
termined by matching the rate of establishment of new
alleles with the velocity of the deterministic traveling
wave describing the fitness distribution in the popula-
tion. The latter is driven by the continuous incorpora-
tion of a large number of new sweeping alleles that have
successfully established at earlier times. At any time
there is thus a broad distribution of frequencies of the
beneficial alleles. The primary problem with the earlier
analysis is that the distribution and dynamics of in-
dividual allele frequencies are not treated directly and
the approximations implicitly made for their forms are
not consistent with the basic processes.

In contrast with the asexual traveling wave for which a
description in terms of a simple traveling wave is valid
(Desai and Fisher 2007; Rouzine et al. 2008) and the
diversity within the population can be ignored, with any
amount of recombination, the diversity and distribution
of allele frequencies are absolutely crucial. It matters a
great deal whether the advance of the fitness wave
occurs via small amounts of each of several new alleles or
all from a single allele. This information is lost by
treatments in terms of the fitness distribution alone.
Note that in general this is also true for adaptation from
standing variation: beneficial alleles initially at low
frequencies can be driven extinct by their linkage to
different backgrounds. If all are initially at sufficiently
high frequencies to avoid this fate, then neither linkage

nor recombination plays much of a role in the dynamics
of the adaptation.

The models we have studied were inspired by facul-
tatively mating organisms, in which outcrossing occurs
at rate r. N. H. Barton and J. Coe (personal commu-
nication) have recently performed a related analysis for
obligate sexual reproduction. In addition to a model
with a linear genetic map (see below), they study the
free and minimal recombination models, for which they
find similar logarithmic dependence on the population
size and mutation rate. Their discrete generation
models with obligate mating do not reveal the de-
pendence of the rate of adaptation on the outcrossing
rate, one of the results of our analysis, but a similar
behavior is implicit in their results.

Extensions and open questions: In this article we
focused on the effect of recombination with r . s in
simple models of mating without chromosomal organi-
zation and without epistasis. We conclude by consider-
ing going beyond these simplifying limits.

We first consider decreasing the recombination rate.
In comparing our analytic results on the free recombi-
nation model with the direct simulations we found good
agreement at high recombination rates, which confirms
the accuracy of the simplifying assumptions made in
analyzing the model (i.e., Equation 3). At lower re-
combination rates we observed that our mean-field
treatment of the recombination underestimates the
rate of adaptation. This is due to the gradual appear-
ance of ‘‘fat tails’’ in the distribution of fitness: specif-
ically, the high fitness nose of the distribution decays
more slowly than the Gaussian assumed in the analysis.
The fluctuations in the time of establishment of the
currently intermediate-frequency alleles become impor-
tant. Some of the causes of these can be studied
analytically. The primary effect is the smaller number
of segregating loci—of order v/s 2 � r 2/s 2—at low re-
combination rates. As the ratio r/s decreases further, the
acquisition of further beneficial mutations near the
nose of the distribution—which dominates the asexual
evolution—starts to become important. Correlations
between loci caused by this process and other sources
will also play important roles.

The behavior of the leading edge of the fitness
distribution is known to be the key factor in determining
the speed of adaptation in the asexual limit of r/0
(Desai and Fisher 2007) and it is of critical importance
in the r>s regime. A correct treatment of this regime,
connecting with the known results for asexual adapta-
tion (Desai and Fisher 2007; Brunet et al. 2008;
Rouzine et al. 2008), requires analyzing the diversity
that is generated by the asexual process and the effects
of small amounts of recombination on this. It is worth
noting that within our approximations, for the low
recombination regime with r>s, the branching process
analysis yields an adaptation speed for all three models
of the form v� s 2log(NU b)/log2(s/r), which is a similar
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form to the asexual result, v � 2s2logðN
ffiffiffiffiffiffiffiffi

Ubs
p

Þ=
log2ðs=UbÞ. This suggests that in spite of the breakdown
of the assumptions, the approximations may give
reasonable results, although not asymptotically accurate
ones, even for s?r?Ub. But we leave this regime, which
is particularly important for microbes with rare genetic
exchange, for future investigations.

Our analysis has focused on the simple approxima-
tion of additive growth rate (equivalent to multiplicative
fitnesses in a discrete-generation model). Some of the
most interesting extensions of the present models
would include epistasis—i.e., genetic interactions—
which makes the effect of each allele explicitly de-
pendent on its genetic background. This dependence
can be very complex, resulting in low heritability of
fitness, in the sense that the fitness of recombinant
progeny may be only weakly correlated with the fitness
of the parents. Remarkably, in the limit of very strong
epistasis (Neher and Shraiman 2009) the establish-
ment probability of an allele is described by a model that
reduces to the communal recombination model de-
scribed above. The speed of adaptation is, however,
determined by a different self-consistency condition
that will be presented elsewhere. In general, how to set
up—never mind analyze!—instructive models of evolu-
tionary dynamics with epistasis between many segregat-
ing loci is largely an open field.

Another important simplification in the free recom-
bination model studied here is the random reassort-
ment of the parental alleles, ignoring the physical
arrangement of the genes. More realistic models would
account for the linear arrangement of genes on the
chromosomes such that chromosomal proximity im-
plies low recombination rate. In this case, the number of
independently transmitted loci in the event of mating is
the product of the number of chromosomes and the
crossovers per chromosome. When the number of
substantially polymorphic loci is sufficiently large, the
free recombination approximation will certainly break
down. But in facultatively mating organisms where
periods of asexual reproduction are interspersed by
outcrossing events, much reassortment can occur. In-
deed, some facultative outcrossers have high crossover
rates [e.g., S. cerevisiae (Mancera et al. 2008)]. In this
case the free recombination model can have a reason-
able regime of validity. More generally, the fact that our
three rather different models yield similar behavior for
the adaptation rates at large population sizes suggests
that the forms of the dependence on parameters—
especially speed proportional to log(NUb)—may be
valid much more broadly. Arguments to be presented
elsewhere suggest that the balance between the lengths
of linked regions and the number of polymorphic loci
in them can result in v � rs log(NUb) in some regimes.
Significant progress in the analysis of the rate of
adaptation with linear chromosomes has recently been
made by Barton and Coe. They invoke a scaling

argument and use a perturbative analysis of nearby
pairs of segregating loci to derive an expression for the
rate of adaptation. In this approximation, the rate of
acquisition of beneficial mutations tends to an upper
limit independent of the population size, selection
coefficient, or mutation rate, being solely determined
by the map length: in our notation this would be
equivalent to v � Crs with C a constant. Note that this
is similar to the conjecture quoted above but without the
log(NUb) factor. To check whether the approximations
are accurate with many concurrent sweeps it will be
necessary to go beyond the perturbative analysis of
Barton and Coe. Furthermore, the interplay between
the effectively asexual evolution of short regions of the
chromosome that are linked for long times and re-
combination between and within them needs to be
understood and could well change the behavior
qualitatively.

The challenges of understanding evolutionary dy-
namics in the presence of many beneficial alleles and
recombination between linear chromosomes, and of
understanding the effects of epistatic genetic interac-
tions, provide many important open problems.
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APPENDIX A: EXACT SOLUTION OF THE COMMUNAL RECOMBINATION MODEL

In the communal recombination model the genotype of recombinant offspring is assembled at random from the
alleles segregating in the population and therefore independent of the fitness of the parents. The equation describing
the establishment probability, Equation 3, therefore simplifies to

@xw̃ðxÞ ¼ r̃pe 1 ðx 1 s̃� r̃ Þw̃ðxÞ � w̃ðxÞ2; ðA1Þ

where all rates, the fitness, and w̃ðxÞ have been rescaled by the standard deviation of the fitness distribution, as in
Equation 17. The quadratic term can be removed by substituting w̃ðxÞ ¼ @xcðxÞ=cðxÞ, which gives rise to the equation

@2
xcðxÞ � r̃pecðxÞ � ðx 1 s̃� r̃ Þ@xcðxÞ ¼ 0: ðA2Þ

A second substitution of cðqÞ ¼ eq2=4fðqÞ with q ¼ x 1 s̃� r̃ maps Equation A2 onto the parabolic cylinder equation

@2
y fðqÞ � r̃pe �

1

2
1

q2

4

� �

fðqÞ ¼ 0: ðA3Þ

The solution with the correct asymptotic behavior is cr̃pe
ðxÞ ¼ eq2=4U ðr̃pe � 1

2 ;qÞ and has the integral representation

cr̃pe
ðxÞ ¼

ð‘

0
dleql�l2=2lr̃pe�1 ðA4Þ
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(Abramowitz and Stegun 1964, Equation 19.5.1). From cr̃pe
ðxÞ, we obtain w̃ðxÞ by taking the log derivative

w̃r̃pe
ðxÞ ¼ @xlogcr̃pe

ðxÞ. The asymptotics of w̃r̃pe
ðxÞ in the different regimes are

w̃r̃peðxÞ ¼

r̃pe

r̃ �x� s̃ 1� 1 1 r̃pe

ðr̃ � x� s̃Þ2
� �

x>r̃� s̃

ffiffiffiffi

p
p

r̃peeðx1s̃�r̃Þ2=2 r̃� s̃>x>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 log r̃pe

p

1 r̃� s̃

x 1 s̃� r̃ x?
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 logr̃pe

p

1 r̃� s̃;

8

>

>

>

<

>

>

>

:

ðA5Þ

as found via the perturbative scheme in the main text. The fixation probability entered Equation A1 as a free
parameter and has to be fixed such that

Ð

ðdx=
ffiffiffiffiffiffi

2p
p

Þe�x2=2w̃r̃pe
ðxÞ ¼ pe, which results in a very similar condition for pe as

the solvability condition of the perturbative scheme used in the main text.

APPENDIX B: THE LOW RECOMBINATION LIMIT OF THE FREE RECOMBINATION MODEL

In the intermediate regime where the recombination term and the quadratic term in Equation 3 are both small, the
fixation probability is of the form w̃ðxÞ ¼ fðxÞeðx1s̃�r̃Þ2=2, where f(x) is a slowly varying function compared to the
Gaussian growth term. Ignoring the quadratic term, the equation for f(x) reads

@xfðxÞ ¼ 2r̃e�xðr̃�s̃Þ1ð3=2Þðr̃�s̃Þ2
ð

dh
ffiffiffiffiffiffi

6p
p e�ððh�ð2x�3ðr̃�s̃ÞÞÞ2=6ÞfðhÞ: ðB1Þ

Hence, the dominant contribution to the recombination term comes from h ¼ 2x� 3ðr̃� s̃Þ � 2x. The function
f(x), however, drops to zero rapidly beyond Q, implying f(x) constant in the interval Q/2 , x , Q.

To study the behavior of f(x) more systematically, it is useful to rearrange Equation 23 as

VðzÞ ¼ s̃peezQ � r̃ Vðz=2Þ
z � r̃

; ðB2Þ

where we assumed r̃ ?s̃ and z>1 such that s̃ in the denominator and e�z2=2 can be neglected. Assuming small r̃, this
equation can be solved iteratively. The two terms on the right, however, have to be matched to cancel the pole at z ¼ r̃,
which can be done by adjusting Q for each order in the iterative solution. Starting with V(0)(z)¼ pe, we have

Vð1ÞðzÞ ¼ s̃peezQ1 � r̃pe

z � r̃
; ðB3Þ

with Q1 ¼ ðlogr̃=s̃Þ=r̃. Iterating Equation B2, it is found that Qk ¼ ðlogck r̃=s̃Þ=r̃ with ck �
Qk�1

n¼1ð1=ð1� 2�nÞÞ, which is
rapidly converging to the value of the crossover point found by power series expansion of V(z) in Equation 26. The
solution to the kth order reads

VðkÞðzÞ ¼ s̃pe

X

k�1

j¼0

ð�r Þj ezQk�j 2�j

Qj
n¼0ðz2�n � r Þ

1
ð�r Þkpe

Q

k�1
n¼0ðz2�n � rÞ ; ðB4Þ

where all poles are canceled by zeros of the numerator. For small z, V(z) is related to the Laplace transform of the
function f(x) in the variable z � r̃:

VðzÞ ¼
ð

dxe�ððz�xÞ2=2Þeðx�r̃ Þ2=2fðxÞ ¼ e�ðz
2=2Þ1 r 2=2

ð

dxexðz�r̃ ÞfðxÞ: ðB5Þ

Since f(x) is essentially zero for x . Q, it is useful to change variables to r¼Q – x and consider the Laplace transform
on r 2 [0, ‘],

VðzÞ ¼ e�ðz
2=2Þ1 r 2=2

ð

dreðQ�rÞðz�r̃ ÞfðQ� rÞ � eQðz�r̃ Þ
ð‘

0
dre�rðz�r̃ ÞfðQ� rÞ; ðB6Þ

where we dropped the z2 and r̃2 terms. We can now back transform V(k)(z) in Equation B4 into x-space and obtain an
approximation for f(x). The inverse transform of terms of the form e�st=ðs 1 aÞn11 is ððr� tÞn=n!Þe�aðr�tÞuðr� tÞ,
with u(x) being the Heaviside function. The most important observation is that the delay t¼Q(1 – 2�j) is different for
the different orders and that higher-order terms come in only below a cutoff set by this delay:
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fkðxÞ �
X

k�1

j¼0

ð�r Þj fjðrÞuðr 1 Q2�j �QÞ ¼
X

k�1

j¼0

ð�rÞj fjðQ� xÞuðQ2�j � xÞ: ðB7Þ

Here, fj(r) is polynomial in r multiplied by a slowly varying exponential expðr̃rÞ (r̃>1). This behavior of f(x) [and
w̃ðxÞ] has a simple interpretation: for Q/2j , x , Q/2j�1 the least unlikely way for a new mutation initially with a
background fitness x to fix is to recombine j times, each time getting closer to the front at Q beyond which it can rise to
a high level without further recombination.

APPENDIX C: MINIMAL RECOMBINATION MODEL

In the minimal recombination model, the allele at each locus is exchanged for a random allele from the population
at rate r. Let the locus i of a particular individual be in state si¼ {0, 1} and assume the beneficial variant is present in the
population at frequency pi. The expected change in fitness upon exchange of locus i is therefore

hDxii ¼ s pið1� siÞ � ð1� piÞsi

	 


¼ sðpi � siÞ: ðC1Þ

Similarly, the variance of the increment is given by

hðDxi � hDxiiÞ2i ¼ s2ðpi 1 si � 2pisi � ðpi � siÞ2Þ ¼ s2pið1� piÞ; ðC2Þ

where we have used si ¼ s2
i . Assuming each locus undergoes exchange with rate r, the drift and diffusion coefficients of

the fitness x are given by

hDxi ¼ r ðX � �X ðtÞÞ ¼ rx and hðDx � hDxiÞ2i ¼ rs2: ðC3Þ

These diffusion and drift processes are represented by the second and third terms of Equation 9. The possibility that
the novel mutation itself is exchanged into a new genome is described by the first term.
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