
Differential equations

Differential equations describe the dynamics of a system through how it changes given it's

current state. Almost all fundamental laws of nature are of this type. In this course, we will

encouter differential equations at almost every step.

Some of these equations are ordinary differential equations. You should be familiar with

those from previous classes. Other are partial differential equations, which you probably

have encountered but which are a bit more advanced. We will work towards solving these

equations by mapping them to systems of ordinary differential equations and solve them

with the computer.

Linear and exponential growth

A simple (silly) example

Consider a bucket to which you add 10ml of water per second. The amount of water in the

bucket (lets call it) will increase over time as

where is the initial amount of water. This is a simple example, but it will highlight some

basic features of simple differential equations.

This very same problem can be described as "the amount of water increases by 10ml/s"

which is just a differential equation:

The right hand side is a constant -- the rate of addition -- . Note that this

constant has dimensions volume over time. These are the same dimensions as (

,) as it has to be. With every equation we consider, you should

convince yourself that the dimensions match up!

y(t)

y(t) = y0 + t × 10
ml

s

y0

= 10
dy

dt

ml

s

α = 10 ml
s

dy

dt

[y] = volume [t] = time

lecture02a_linearAndExponentialGrowth http://localhost:8890/nbconvert/html/lecture02a_line...

1 of 6 05/10/2022, 17:21

Direct integration

We have already written down the solution of the differential equation above. More formally,

we can solve this equation by integrating both sides from :

The left hand side is

and hence simple the amount of water that was added between time 0 and time . The

right hand side is

Together with we recover the solution given above.

This is of course an extremely simple example, but it will teach us fundamental properties

of differential equations

• a differential equation doesn't determine the solution uniquely, we get to choose the

initial condition

• if the differential equation is such that the right hand side does not depend on , we

can integrate it directly.

Solving differential equation with a computer

A differential equations are typically introduced as describing change in discrete little steps

and then taking the limit to every smaller steps to define the differential equation. To solve

differential equations with the computer, we do have to keep these steps finite and the

above problem turns into a finite difference equation

For this example, we already know the answer. But learning how to solve ODEs with a

computer will allow us to solve many equation to which no simple closed solution is known.

It is therefore useful to explore how we would solve this equation numerically. The key idea

is to rearrange the above equation as

We just start with and add one step at a time. The computer will do this for

us dutifully.

0 … t

∫
t

0

dt′ = ∫
t

0

αdt′
dy

dt′

∫
t

0

dt′ = y(t) − y(0)
dy

dt′

t

∫
t

0

αdt′ = αt

y(0) = y0

y(0) = y0

y

y(t) − y(t − Δt) = Δy(t) = Δt = αΔt
dy

dt

y(t) = y(t − Δt) + αΔt

y(t) = y0 αΔt

lecture02a_linearAndExponentialGrowth http://localhost:8890/nbconvert/html/lecture02a_line...

2 of 6 05/10/2022, 17:21

The first 10 time points: [0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
2.25]
The first 10 time values: [3, 4.75, 6.5, 8.25, 10.0, 11.75, 13.5, 15.25,
17.0, 18.75]

Lets graph these results!

<matplotlib.legend.Legend at 0x7f2a50433250>

• change the values of y_0 , Delta_t , n_steps , and alpha and see what

happens.

In [1]:
y_0 = 3 # this is a quantity with units ml
t_0 = 0 # we start at 0 seconds
y = [y_0] # this is the list in which we will gather y(t_0), y(t_1), y(t_2), etc
t = [t_0] # this list will contain the time points t_0, t_1, t_2

alpha = 7 # this is in ml/s

Delta_t = 0.25 # discrete time intervals
n_steps = 100 # number of steps we want to integrate, the final time will be t_0 + n_ste

for i in range(n_steps):
t.append(t[i] + Delta_t) # the new time t_[i+1] = t_[i]+Delta_t
y.append(y[i] + alpha*Delta_t) # the new time y_[i+1] = y_[i]+alpha*Delta_t

print("The first 10 time points:", t[:10])
print("The first 10 time values:", y[:10])

In [2]:
import matplotlib.pyplot as plt

plt.plot(t, y, label='water level')
plt.xlabel('time [s]') # label axis and specify units!
plt.ylabel('content [ml]')
plt.legend()

Out[2]:

lecture02a_linearAndExponentialGrowth http://localhost:8890/nbconvert/html/lecture02a_line...

3 of 6 05/10/2022, 17:21

Exponential growth

The above example is so simple that the answer is self-evident and it might have seemed

silly to do all this song and dance. Now, lets consider something slightly more complicated

-- for example exponential growth of bacteria.

If the bacteria divide every minutes and we started with a single cell, we would go from

etc after a time

This assumes that every cells divide exactly minutes after is born and cells stay

syncronized forever. This is probably not the case: there is a distribution of division times

not a single value .

Alternatively, we could assume that the cells are completely desynchronized. In this case,

the number of cells would change in a time interval approximately as

where is the fraction of cells that divide during the time interval . This finite

difference equation can be readily rearranged to resemble a differential equation

This differential equation means "the rate at which changes is proportional to " --

this is the hall-mark of exponential growth. This equation is again one with an exactly

known solution given by

where is the initial number of cells. (Confirm this by direct differentiation).

Numerical solution

While exponential growth is again a case that as an exact solution, it is instructive to solve

it numerically. We will use this example to demonstrate some challenges in numerical

integration of differential equations. In particular, we will investigate how the accuracy of

the solution depends on the step size .

τ

1 → 2 → 4 → 8 …

0 → τ → 2τ → 3τ …

τ

τ

n(t) Δt

n(t + Δt) = n(t) + n(t)
Δt

τ

Δt
τ

Δt

lim
Δt→0

= = n(t)/τ

n(t + Δt) − n(t)

Δt

dn(t)

dt

n(t) n(t)

n(t) = n0et/τ

n0

Δt

lecture02a_linearAndExponentialGrowth http://localhost:8890/nbconvert/html/lecture02a_line...

4 of 6 05/10/2022, 17:21

<matplotlib.legend.Legend at 0x7f2a0ff25dc0>

In [3]:
import numpy as np # import of numerics library -- we need the exponential function

tau = 30 # division time of 30 minutes
n_0 = 1
t_0 = 0
tmax = 10*tau # simulate this process for 10 times the average division time.

for Delta_t in [10,3,1]:
n = [n_0]
t = [t_0]
for i in range(tmax//Delta_t): # number of steps necessary is tmax divided by step s

n.append(n[i] + n[i]*Delta_t/tau)
t.append(t[i] + Delta_t)

plt.plot(t, n, label=f"Delta t={Delta_t}")

plt.plot(t, np.exp(np.array(t)/tau), label="exact")
plt.xlabel("time [minutes]")
plt.ylabel("population size")
plt.legend()

Out[3]:

lecture02a_linearAndExponentialGrowth http://localhost:8890/nbconvert/html/lecture02a_line...

5 of 6 05/10/2022, 17:21

Accuracy depends on step size

As we saw above, the accuracy of the solution depends quite critically on the step size

Delta t . The problem is that at every step, we slightly undershoot since the curve

continues to bend upwards:

Sometimes, it is sufficient to simply choose a small enough step size. But more generally

one needs to use a more sophisticated method than the simple forward stepping we have

done here (called "Forward-Euler" method). A good compromise is typically the Runge-

Kutta method which is implemented in most numerical computation packages.

For more conceptual purposes and simple exploration, the forward Euler method is still

useful and we will continue to use it.

Dig deeper

• In the above example, instead of varying , vary and . Plot the results on a

linear and a logarithmic y-scale

• Solve the ODE using the method of Separation of variables

• redo the integration of the exponential growth problem using a the standard ODE

integrator from scipy

Δt n0 τ

= n(t)/τ
dn(t)

dt

In []:

lecture02a_linearAndExponentialGrowth http://localhost:8890/nbconvert/html/lecture02a_line...

6 of 6 05/10/2022, 17:21

https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods
https://en.wikipedia.org/wiki/Separation_of_variables
https://en.wikipedia.org/wiki/Separation_of_variables
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

