lecture03c_BoundaryAndInitialConditions http://localhost:8888/nbconvert/html/lecture03c Bou...

Boundary and initial conditions

To solve the diffusion equation, you need to specify the distribution P(z|0) in the
beginning -- the initial condition -- and what happens at the ends of the range your are
studying -- the boundary conditions.

Boundary conditions for diffusion problems are typically of two forms:

e reflecting: impenetrable wall

e absorbing: everything that passes the boundary is removed

PJ&CLB

§ E . AE;ML;MB
i P
!

As initial condition, we will consider a case where the left half of our domain is filled and
the right half is empty.

N\

\
——

LG

(s 0)

S

X oo

Numerical solution

While it is possible to solve the diffusion equation with absorbing or reflecting boundary
conditions exactly, we fill focus here on numerical solution:

1of3 21/10/2022, 16:43

lecture03c_BoundaryAndInitialConditions http://localhost:8888/nbconvert/html/lecture03c Bou...

In [2]: import numpy as np

import matplotlib.pyplot as plt

define the derivative

def dpdt(p, r, 1):
dp = np.zeros like(p)
dp[1l:-1] 4= r*(p[:-2] - p[1l:-1]) # jump to the right
dp[l:-1] 4= 1*(p[2:] - p[l:-11) # jump to the left
dp[0] += U*p[l] - r*p[0] # reflecting boundary (only right jump
COMMENT OUT ONE OR THE OTHER OF THE FOLLOWING LINES
TO SWITCH BETWEEN ABSORBING OR REFLECTING BOUNDARY CONDITIONS
dp[-1] 4= r*p[-2] - *p[-1] # reflecting boundary (only left jump a
#dp[-1] += r*p[-2] - (r+l)*p[-1] # absorbing boundary (left AND rig

return dp
define parameters and left/right hopping rates
D=5 # um™~2/s
v =20.0
dx = 0.1 # 1if dx is too small, numerical solution is unstable
dt = 0.0002 # if dt is too large, numerical solution is unstable

r = D/dx**2 + v/dx/2
1 = D/dx**2 - v/dx/2
print("left/right rates:", r, 1)

set up the initial condition

xmax = 5 # um

X = np.arange(-xmax,xmax,dx)

p = np.zeros_ like(x)

plx<0] = 1/xmax # density 1/xmax for x<0, density 0 for x>0

solve the equation using the forward Euler method
tmax = 1
t=0
for tmax in [0,0.1, 0.5, 1,3, 10]:
while t<tmax:
p += dt*dpdt(p, r, 1)
t += dt
plot the result
plt.plot(x,p, label=f"t={t:1.2f}s")

plt.legend()
plt.ylabel('probability density"')
plt.xlabel('position [um]")

left/right rates: 499.9999999999999 499.9999999999999
out[2]: Text (0.5, 0, 'position [um]')

20f3 21/10/2022, 16:43

lecture03c_BoundaryAndInitialConditions http://localhost:8888/nbconvert/html/lecture03c Bou...

0.200 - —— t=0.00s
\ t=0.10s

01757 \ —— t=0.50s
0.150 A — t=1.00s
—— t=3.00s

0.125 1 t=10.00s

0.100 -

0.075 A

probability density

0.050 -

0.025 A

0.000

-4 -2 0 2 4
position [um]

Reflecting initial condition

e The initial step function broadens and becomes flat at 1/2 the height.

o Total area under curve is constant.

e Time to spread a distance x,,,, = 5um is about t = 3s. This is expected given that
2Dt = 30um? ~ :z:?mw

Absorbing initial conditions

¢ At the absorbing initial condition, the probability distribtion goes linearly to 0

¢ The total amount of probability left gradually decreases.
Dig deeper

e Change xmax and explore how the time scale of equilibration changes!
o Explore the steady state behavior of the solution with reflecting boundaries with non-
zero v!

¢ For an absorbing boundary at the right end, plot the amount of probability (Zw p(z|t))
that is left as a function of time.

¢ Modify the code such that both boundaries are absorbing.

¢ Change the initial condition.

In []:

In [1:

30of3 21/10/2022, 16:43

