
Stiff polymers

In the previous section, we assumed that the direction of monomers completely

randomizes at each junction. In reality, the degree to which direction changes is of course

constrained and not completely random. There are different ways in which such stiffness

can be incorporated into models and the overall conformation of the polymer depends on

the relation of stiffness to the length of the polymer.

There are two major ways in which such effects are modelled. One is by restricting the

bond angles of discrete and stiff segments (freely rotating chain), the other is by modeling

the polymer as a continuous chain with some stiffness (worm-like chain).

Freely rotating chain

In this model, bond of two segments is contraint such that the polymer can rotate freely

around the azimuth, but has a constrained polar angle , either on average or to a fixed

value:

This has the consequence that the direction of the polymer changes slowly if is small,

which we now explore via simulations:

θ

⟨→ei→ei+1⟩ = cos θ

θ

lecture04b_StiffPolymers http://localhost:8888/nbconvert/html/lecture04b_Stiff...

1 of 7 12/11/2022, 16:23

In [1]:
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
return a vector on the sphere with angles theta (polar) and phi (azimuth)
see https://en.wikipedia.org/wiki/Spherical_coordinate_system
def unit_vector(phi, theta):

x = np.sin(theta) * np.cos(phi)
y = np.sin(theta) * np.sin(phi)
z = np.cos(theta)
return (x,y,z)

return a matrix that rotates a vector 0,0,1 to vec
def rotation_matrix(vec):

length_xy = np.sqrt(np.sum(vec[:2]**2))
length = np.sqrt(np.sum(vec**2))
phi = np.arccos(vec[0]/length_xy)*np.sign(vec[1])
theta = np.arccos(vec[2]/length)
xy_rotation = np.array([[np.cos(phi), -np.sin(phi),0],

[np.sin(phi), np.cos(phi),0],
[0, 0, 1]])

xz_rotation = np.array([[np.cos(theta), 0 , np.sin(theta)],
[0, 1, 0],
[-np.sin(theta), 0, np.cos(theta)]])

first rotate the vector by theta in the xz plane, followed by phi in the xy plane
return xy_rotation.dot(xz_rotation)

In [9]:
pick a random new direction given the last direction vec and the angle constraint theta
def new_direction(vec, theta):

phi = np.random.uniform(0,2*np.pi)
e = unit_vector(phi, theta)
return rotation_matrix(vec).dot(e)

make a freely rotating chain of length N with angle constraint theta and segment length
def freely_rotating_chain(N, d, theta):

initial position
positions = [np.array([0,0,0])]
directions = [np.array([1,0,0])]
for n in range(N):

increment position
directions.append(new_direction(directions[-1], theta))
positions.append(positions[-1] + d*directions[-1])

return np.array(positions)

d = 1
N = 10000
theta = 10/180*np.pi
positions = freely_rotating_chain(N,d=1, theta=theta)

plot the trajectory
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot(positions[:,0], positions[:,1], positions[:,2])
plt.tight_layout()

lecture04b_StiffPolymers http://localhost:8888/nbconvert/html/lecture04b_Stiff...

2 of 7 12/11/2022, 16:23

On short length scales, these polymers look stiff, at least for small . On long length

scales, this is again just a random coil.

In fact, one can calculate that the end-to-end distance of such a freely rotating chain

Text(0, 0.5, 'squared end-to-end distance')

θ

⟨ →R
2
⟩ ≈ d2N

1 + cos θ

1 − cos θ

In [10]:
n_max=10
N = 5000
n_vals = range(0,N,N//10)

for ti, theta in enumerate([0.4, 0.8, 1.2]):
Rsq = []
for n in range(n_max):

polymer = freely_rotating_chain(N, d=1, theta=theta)
Rsq.append([np.sum(polymer[i]**2) for i in n_vals])

Rsq = np.array(Rsq)
plt.errorbar(n_vals, Rsq.mean(axis=0), np.std(Rsq, axis=0)/np.sqrt(n_max
plt.plot(n_vals, np.array(n_vals)*(1+np.cos(theta))/(1-np.cos(theta)),

plt.xlabel('length of chain')
plt.ylabel('squared end-to-end distance')

Out[10]:

lecture04b_StiffPolymers http://localhost:8888/nbconvert/html/lecture04b_Stiff...

3 of 7 12/11/2022, 16:23

lecture04b_StiffPolymers http://localhost:8888/nbconvert/html/lecture04b_Stiff...

4 of 7 12/11/2022, 16:23

Worm-like chain model

Instead of modeling a polymer as discrete stiff segments, the worm-like chain model

assumes a continuous filament (much like a spaghetti) that resists bending due to an

intrinsic stiffness. Models of this type are for example appropriate to model double

stranded DNA that is very stiff on the scale of individual base pairs.

Now that we don't have free joints between segments, we need to get an idea over what

length this polymer is effectively stiff and over what length it is floppy in a cell under

thermal activation. Consider a WLC (worm-like chain) with stiffness . Bending an arc-

segment of length into a circle with radius requires an energy of

By thermal activation, the polymer will chance direction if the bending energy of a segment

of length into a circle of radius equals the thermal energy:

To define this length scale more precisely, it is customary to consider the correlation of

tangent vectors and at two locations and and define the persistence length

as the length scale on which the direction correlation decays:

The Kuhn length of the WLC model happens to be twice the persistence length, which is

given by .

κ

L R

κL

2R2

l ∼ l

= ∼ kT ⇒ l ∼
κl

2l2

κ

2l

κ

kT

→e(s) →e(t) s t lp

⟨→e(s)→e(t)⟩ = exp(−|t − s|/lp)

lp = κ/kT

lecture04b_StiffPolymers http://localhost:8888/nbconvert/html/lecture04b_Stiff...

6 of 7 12/11/2022, 16:23

Persistence length of different biopolymers

• dsDNA: 50nm

• actin filaments:

• microtubule: 1.4 mm

Dig deeper

• What happens in the freely-rotating chain model for , and ?

• Recapitulate the calculation of the end-to-end distance in the script!

17μm

θ = 0 π/2 π

lecture04b_StiffPolymers http://localhost:8888/nbconvert/html/lecture04b_Stiff...

7 of 7 12/11/2022, 16:23

