
Exponential growth

If the bacteria divide every  minutes and we started with a single cell, we would go from

etc after a time

This assumes that every cells divide exactly  minutes after is born and cells stay

syncronized forever. This is probably not the case: there is a distribution of division times

not a single value .

Alternatively, we could assume that the cells are completely desynchronized. In this case,

the number of cells  would change in a time interval  approximately as

where  is the fraction of cells that divide during the time interval . This finite

difference equation can be readily rearranged to resemble a differential equation

This differential equation means "the rate at which  changes is proportional to "

-- this is the hall-mark of exponential growth. This equation is again one with an exactly

known solution given by

where  is the initial number of cells. (Confirm this by direct differentiation).

Numerical solution

While exponential growth is again a case that as an exact solution, it is instructive to

solve it numerically. We will use this example to demonstrate some challenges in

numerical integration of differential equations. In particular, we will investigate how the

accuracy of the solution depends on the step size .
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<matplotlib.legend.Legend at 0x7f13d480dd00>

In [4]: import numpy as np # import of numerics library -- we need the exponential function

tau = 30 # division time of 30 minutes

n_0 = 1

t_0 = 0

tmax = 10*tau # simulate this process for 10 times the average division time. 

for Delta_t in [3,1, 0.1]:

n = [n_0]

t = [t_0]

for i in range(int(tmax//Delta_t)): # number of steps necessary is tmax divided by st

n.append(n[i] + n[i]*Delta_t/tau)

t.append(t[i] + Delta_t)

    

plt.plot(t, n, label=f"Delta t={Delta_t}")

plt.plot(t, np.exp(np.array(t)/tau), label="exact")

plt.xlabel("time [minutes]")

plt.ylabel("population size")

plt.legend()

Out[4]:
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Accuracy depends on step size

As we saw above, the accuracy of the solution depends quite critically on the step size

Delta t . The problem is that at every step, we slightly undershoot since the curve

continues to bend upwards:

Sometimes, it is sufficient to simply choose a small enough step size. But more generally

one needs to use a more sophisticated method than the simple forward stepping we have

done here (called "Forward-Euler" method). A good compromise is typically the Runge-

Kutta method which is implemented in most numerical computation packages.

For more conceptual purposes and simple exploration, the forward Euler method is still

useful and we will continue to use it.
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Logistic Growth

In the previous notebook, we explored linear and exponential growth. In both cases,

growth goes on forever -- a situation that doesn't typically happen for example since

bacteria run out of food. So lets walk through such an example:

• the food initially available is 

• division of a bacterium requires  amount of food. Hence there can at most by

 new bacteria at the end

• the food remaining after time  is .

• lets assume the rate of division decreases proportionally with the available food 

With these assumptions and definitions, we find a difference equation

Rearranging this into a differential equation in the usual way results in

This can be further simplified by realizing that whenever it matters, the  so that

we can simply drop  from the right hand side to obtain the standard logistic differential

equation:

Here  is often called carrying capacity.

C0

x

N = C0/x

t C(t) = C0 − x × (n(t) − n0)
C(t)

C0τ

n(t + Δt) = n(t) + Δt × αn(t) ×

= n(t) + Δt × αn(t) × (1 − )
= n(t) + Δt × αn(t) × (1 − )

C(t)

C0

x(n(t) − n0)

C0

n(t) − n0

N

lim
Δt→0

= = αn(t) × (1 − )n(t + Δt) − n(t)

Δt

dn(t)

dt

n(t) − n0

N

n(t) ≫ n0

n0

= αn(t) (1 − )dn(t)

dt

n(t)

N

N

lecture02b_Growth http://localhost:8888/nbconvert/html/lecture02b_Grow...

4 of 7 08/11/2023, 11:32



Before we start solving this equation, lets look at the case !

In this case, the equation simplifies

This is simply exponential growth like we have seen before, but we expect this

approximation only to be valid while

<matplotlib.legend.Legend at 0x7f1444608f40>
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In [1]: # define function that return derivative

def dndt(n, alpha, N):

return alpha*n*(1-n/N)

In [2]: alpha = 1/30 # division time of 30 minutes, rate is inverse

N = 100

n_0 = 1

n = [n_0]

t = [0]

Delta_t = 0.1

tmax = 10/alpha

for i in range(int(tmax//Delta_t)): # number of steps necessary is tmax divided by step s

n.append(n[i] + Delta_t * dndt(n[i],alpha,N))

t.append(t[i] + Delta_t)

In [3]: import matplotlib.pyplot as plt

plt.plot(t, n, label=f"Numerical solution")

plt.xlabel("time [minutes]")

plt.ylabel("population size")

plt.legend()

Out[3]:
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The logistic equation has an exact solution:

At  we have  as it has to be. At very large , the solution tends to .

The solution to the logistic equation can be parameterized in different ways and we'll

explore these more in the exercises.

<matplotlib.legend.Legend at 0x7f58f957feb0>
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In [16]: import numpy as np

def logistic(t, alpha, n_0, N):

t_arr = np.array(t)

return N*np.exp(alpha*t_arr)/(N/n_0-1+np.exp(alpha*t_arr))

plt.plot(t, logistic(t,alpha, n_0 ,N), label="Exact solution")

plt.plot(t, n_0*np.exp(alpha*np.array(t)), label="Approximate solution")

plt.plot(t, n, label=f"Numerical solution")

plt.xlabel("time [minutes]")

plt.ylabel("population size")

plt.ylim(0,N*1.1)

plt.legend()

Out[16]:
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Dig deeper

• change , , and  in the above graphs and explore how the results change.

• verify the solution to the logistic equation.

• graph the output on a logarithmic scale.

τ n0 N

In [ ]:  

In [ ]:  
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