
Population dynamic models

Susceptible-Infected-Recovered (SIR-) models

SIR models are the simplest models of the spread of a pathogen (for example SARS-

CoV-2) in a population. They model how individuals that are initially susceptible, become

infected and infect more, before recovering.

Lotka-Voltera (predator-prey) models

Predator-prey models are conceptually very similar to SIR models. A predator species

grows when there is a lot of prey around, if it exhausts the prey, the predator population

collapses and the prey recovers.

This SIR model is described by the following set of differential equations describing the

fraction of the population that are susceptible , infectious  or recovered ( ):

We don't actually need an additional equation for  since . The quantity

 is the rate at which an people are infected in encouters between susceptible and

infectious people, which is proportional to , while  is the rate at which infectious

people recover.

You will have heard a lot about the quantity  which describes how many people an

infectious person infects on average. This quantity can be expressed in terms of  and 

as

Note that this is system of differential equations. There are two quantities for which the

equations describe the rate at which they change. And these two equations are coupled,

that is they depend on each other in a non-linear way (the term . Such systems

can rarely be solved analytically. But we can tackle them by two approaches:

• approximate specific limits, for example the limit  and .

• solve them numerically

S I R

= −βS(t)I(t) + δ(1 − S − I)

= βS(t)I(t) − νI(t)

= νI(t) − δR

dS(t)

dt
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S ≈ 1 I ≪ 1
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Approximate solution in the early epidemic

Assume a population that is entirely susceptible to a disease  and a

single individual is infected . If  is very big, the outbreak will initially not

make much of a difference for  which stays close to . If we hence ignore the first

equation and assume  for the second, we get

We have seen this equation before: it is simply exponential growth with a growth rate

. If , the outbreak grows ( ), while the outbreak shrinks for  (

).

The initial solution of this equation is

However, this approximate solution will not describe the behavior once the outbreak is

large. To understand this, we need to solve it numerically.

Numerical solution using the ODE solver from scipy

instead of using our simple "step-by-step" (see below for a version using forward Euler)

solution of the ODE, we will now use the a dedicated solver from the scientific computing

package scipy to solve the ODE. This solver is works for all sorts of problems with one,

two, three, or more variables. To be that general, the solver requires the function to be

solved to be provided in a particular way. The definition of the function needs to accept

arguments as follows

• a vector (numpy array) that contains the state. One number of each variable y =

[y_1, y_2, y_3, ...]

• the time (even if the problem doesn't depend on time

• all other parameter

The function needs to return a vector containing the derivative of each of the variables.

[dy_1/dt, dy_2/dt, ...[

S(t) = 1 − 1/N

I(0) = 1/N N

S(t) 1

S ≈ 1

≈ (β − ν)I(t) = ν(R0 − 1)I(t)
dI(t)

dt

β − ν β > ν R0 > 1 β < ν

R0 < 1

I(t) ≈ I(0)eν(R0−1)t

In [13]: # define a function that returns the derivative of S and I. Note that y = [S,I]

def derivative(y, t, beta, nu, delta):

S, I = y # y is a vector with values [S, I]

dSdt = -beta*S*I + delta*(1-S-I)

dIdt = beta*S*I - nu*I

return [dSdt, dIdt]
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This returns a solution in shape of a matrix where columns corresponds to the variables

y_1, y_2, ... (S, I in our case) and each row corresponds to one timepoint from the vector

T.

array([[9.99999000e-01, 1.00000000e-06],

       [9.99998203e-01, 1.39911620e-06],

       [9.99997105e-01, 1.94990401e-06],

       [9.99995539e-01, 2.73679560e-06],

       [9.99993389e-01, 3.81764424e-06]])

Final susceptible population: 0.50

0.695=1.001

In [14]: import numpy as np

from scipy.integrate import odeint

I0 = 1e-6

S0 = 1 - I0

nu = 1/3 # recovery after 3 days

delta = 1/180 # susceptible again after 180days

R_0 = 2 # average number of infections per individual

beta = R_0*nu # one infection per day per contact

T = np.linspace(0,1000,1001) # time points for which we want to solve the equation

# solve it!

sol = odeint(derivative, [S0, I0], T, (beta, nu, delta))

In [15]: sol[:5,:]

Out[15]:

In [23]: import matplotlib.pyplot as plt

plt.plot(T, sol[:,0], label='susceptibles')

plt.plot(T, sol[:,1], label='infectious')

plt.text(10,0.6, f"R_0={R_0}")

#plt.plot(T, I0*np.exp((beta-nu)*T), ls='--', label='initial approximation')

plt.xlim([0,1000])

plt.ylim([0,1.1])

plt.ylim([I0,1.1])

plt.xlabel('time')

#plt.yscale('log')

plt.legend()

# see how many people remain 6susceptible after the outbreak. This is the last element of 

print(f"Final susceptible population: {sol[-1,0]:1.2f}")

print(f"{-np.log(sol[-1,0]):1.3f}={R_0*(1-sol[-1,0]):1.3f}")

plt.savefig('SIR_overshoot.png')
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There are two important messages here:

• solving a system of non-linear ODEs works just the same as a one-dimensional one

• Approximate solutions in some parts of the range can be very accurate

Equivalent solution using forward Euler

lecture02c_SIR_and_LV_models http://localhost:8889/nbconvert/html/lecture02c_SIR_...

4 of 8 16/11/2023, 19:53



Text(0.5, 0, 'time')

In [34]: def derivative_ForwardEuler(S,I,beta,nu,delta):

dSdt = -beta*S*I + delta*(1-S-I)

dIdt = beta*S*I - nu*I

return [dSdt, dIdt]

t0 = 0

tmax=1000

dt = .5

Svec = [S0]

Ivec = [I0]

tvec = [t0]

t = t0

S = S0

I = I0

while t<tmax:

dSdt, dIdt = derivative_ForwardEuler(S,I, beta, nu, delta)

S += dt*dSdt

I += dt*dIdt

t += dt

Svec.append(S)

Ivec.append(I)

tvec.append(t)

plt.plot(tvec, Svec, label='S forward Euler')

plt.plot(tvec, Ivec, label='I forward Euler')

plt.plot(T, sol[:,0], label='S_odeint', ls='--', c='C0')

plt.plot(T, sol[:,1], label='I_odeint', ls='--', c='C1')

plt.legend()

plt.xlabel('time')

Out[34]:
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Lotka-Voltera models

Lets consider the prey species with population  and a predator species with population

.

Here  is the growth rate of the prey in absence of predation,  is the predation rate per

prey-predator encounter,  is the death rate of predators without food.

We can solve this system numerically analogously to what we did for the SIR model.

x

y

= −βxy + αx

= βxy − γy

dx

dt

dy

dt

α β

γ

In [35]: def derivative_LV(P, t, alpha, beta, gamma):

x,y = P # P is a vector with values [x, y]

dxdt = -beta*x*y + alpha*x

dydt = beta*x*y - gamma*y

return [dxdt, dydt]

In [55]: x0 = 10 # initial population of prey

y0 = 1 # initial population of predator

gamma = 1/2 # predator dying in 2 weeks

alpha = 1 # growth rate of prey population in units per week

beta = 0.01 # predation rate 0.01

T = np.linspace(0,100,1001)

sol = odeint(derivative_LV, [x0, y0], T, (alpha, beta, gamma))

In [58]: plt.plot(T, sol[:,0], label='prey')

plt.plot(T, sol[:,1], label='predator')

plt.xlabel('time')

plt.legend(loc=1)

plt.yscale('log')
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Text(0, 0.5, 'predator')

In [59]: # plot of the limit cycle in the phase plan of predator and prey

plt.plot(sol[:,0], sol[:,1])

plt.xlabel('prey')

plt.ylabel('predator')

Out[59]:
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Dig deeper

• change the parameters of the model ( ) and observe how the fraction of

individuals that remain susceptible at the end of the outbreak changes.

• automate the process of changing  and plot the remaining number of susceptible

against .

• explore the behavior of the outbreak as you change the initial value  of . What

happens when ? How does this "herd immunity" threshold compare to

the remaining number of susceptible individuals after the outbreak?

• include a an additional state of "exposed" individuals that describes individuals

during their incubation time. These models are called Susceptible-Exposed-

Infectious-Recovered-models (SEIR models)

R0

R0

R0

S0 S

S0 < 1/R0

In [ ]:  
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