
Dynamical systems

• dynamic models that relate expression and translation of genes to the current state

of the cell

• typically formulated as systems of differential equations (for example one for each

gene)

• models can be deterministic or stochastic

• endless scope for complexity (transcription, translation, modifications, nuclear

import/export etc...)

Such systems are often modeled with ordinary differential equations or short ODEs

that we will now explore in some more detail.

Systems of ODEs

For a set of variables  describing the cell (protein, mRNA concentrations), we can

define:

•  describe how rapidly quantity  is changing given the state of the

cell.

• these function could depend on time  (day/night, other perturbations)

One dimensional dynamical systems

The simplest examples are one-dimensional and independent of time.

In the case of gene expression modeling, the function  typically consists of a

production term and a degradation term:

xi

= f1(x1, x2, … , xn, t)

= f2(x1, x2, … , xn, t)

⋮ = ⋮

= fn(x1, x2, … , xn, t)

(1)

(2)

(3)

(4)

dx1

dt
dx2

dt

dxn

dt

fi(x1, … , xn, t) i

t

= f(x)
dx

dt

f(x)

= α − βx
dx

dt
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To analyze the qualitative behavior of such systems, consider the following graph of 

:

Over time, this results in a dynamic like this:

f(x)
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Text(0.5, 0, 't')

• in one dimensional systems, not many things can happen

• solution either tend to a stable fixed point, or are dragged around by a time

dependent forcing.

In [1]: import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

def dxdt(x,t, a, b):

return a - b*x

a = 1

b = 0.4

t = np.linspace(0,10,101)

x = np.linspace(-2,6, 101)

x0 = 5

## make a figure with two subplots

fig, axs = plt.subplots(1,2, figsize=(10,5))

## plot the derivative f(x,t) = dxdt(x,t)

axs[0].plot(x, dxdt(x,0, a, b))

axs[0].plot(x, np.zeros_like(x), c='k')

axs[0].set_xlabel('x')

axs[0].set_ylabel('f(x,t)')

## plot the solutions of the ODE for different 

for x0 in [0,1,2,3,4]:

sol = odeint(dxdt, x0, t, args=(a,b))

axs[1].plot(t, sol)

axs[1].set_ylabel('x')

axs[1].set_xlabel('t')

Out[1]:
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Two dimensional dynamical systems

Things get a lot more interesting in two dimensions. We'll consider time independent

systems like this:

Again, before solving them numerically, we would like to understand how they behave

generically.

Instead of on a line (the -axis above), the system now lives in a plane ( ). There

are certain special places on that plane, where  and/or  are zero,

meaning the variables  and/or  don't change. The lines with  and

 are called null-clines.

Lotka Volterra system

= f1(x1, x2)

= f2(x1, x2)

dx1

dt

dx2

dt

x x1, x2

f1(x1, x2) f2(x1, x2)

x1 x2 f1(x1, x2) = 0

f2(x1, x2) = 0

In [30]: def derivative_LV(P, t, alpha, beta, gamma):

x,y = P # P is a vector with values [x, y]

dxdt = -beta*x*y + alpha*x

dydt = beta*x*y - gamma*y

return [dxdt, dydt]

X, Y = np.meshgrid(np.linspace(0.01,700, 20), np.linspace(0.01,700,20))
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Text(0.5, 0, 'prey')

SIR model

In [42]: gamma = 1/2 # predator dying in 2 weeks

alpha = 1 # growth rate of prey population in units per week

beta = 0.01 # predation rate 0.01

x0 = 10 # initial population of prey

y0 = 1 # initial population of predator

T = np.linspace(0,10,1001)

sol = odeint(derivative_LV, [x0, y0], T, (alpha, beta, gamma))

plt.plot(sol[:,0], sol[:,1])

dXdt, dYdt = derivative_LV([X,Y], 0, alpha, beta, gamma)

length = np.sqrt(dXdt**2 + dYdt**2)

plt.quiver(X,Y,dXdt/length**0.75, dYdt/length**0.75, angles='xy')

plt.plot([0,700], alpha/beta*np.array([1,1]))

plt.plot(gamma/beta*np.array([1,1]), [0,700])

plt.ylabel('predator')

plt.xlabel('prey')

Out[42]:
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Text(0.5, 0, 'Susceptible')

In [52]: def derivative(y, t, beta, nu, delta):

S, I = y # y is a vector with values [S, I]

dSdt = -beta*S*I + delta*(1-S-I)

dIdt = beta*S*I - nu*I

return [dSdt, dIdt]

S, I = np.meshgrid(np.linspace(0.0,1.1, 20), np.linspace(0.0,0.2,20))

I0 = 1e-6

S0 = 1 - I0

nu = 1/3 # recovery after 3 days

delta = 1/180 # susceptible again after 180days

R_0 = 2 # average number of infections per individual

beta = R_0*nu # one infection per day per contact

T = np.linspace(0,1000,1001) # time points for which we want to solve the equation

sol = odeint(derivative, [S0, I0], T, (beta, nu, delta))

plt.plot(sol[:,0], sol[:,1])

dSdt, dIdt = derivative([S,I], 0, beta, nu, delta)

length = np.sqrt(dSdt**2 + dIdt**2)

plt.quiver(S,I,dSdt/length**0.8, dIdt/length**0.8, angles='xy')

s=np.linspace(0,1,101)

plt.plot(s, delta*(1-s)/(delta+beta*s))

plt.plot(nu/beta*np.array([1,1]), [0,0.2])

plt.ylim(0,0.2)

plt.ylabel('Infected')

plt.xlabel('Susceptible')

Out[52]:
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Dig deeper

• Change the derivative in the code snippet to different functions  and explore

the behavior of the ODE.

• Replace odeint  with the forward-Euler algorithm we used previously. Verify that

you get the same answer as before.

f(x, t)

In [ ]:  
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