# Transcription factor binding

• a single TF binds to a binding site according to simple mass-action kinetic:

$$P(\text{TF bound}) = \frac{[X]}{K + [X]}$$

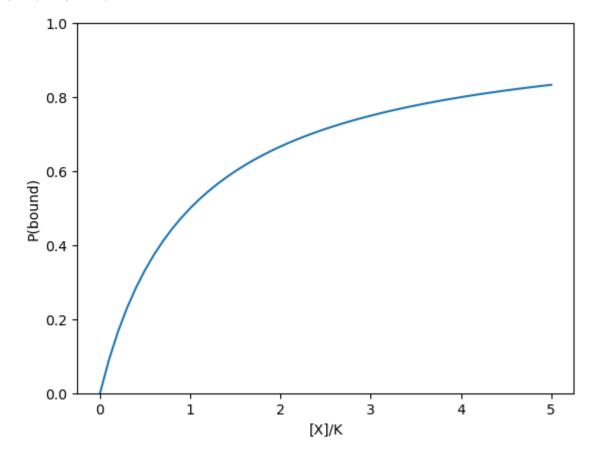
where [X] is the concentration and K the affinity.

- $\bullet$  binding is mediated by non-covalent interactions, so K will depend on salt concentrations
- non-cooperative binding:  $P({\rm TF~bound})$  increases linearly with [X] and saturates at 1 for  $[X]\gg K$

```
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,5,51)
plt.plot(x, x/(1+x))
plt.ylabel('P(bound)')
plt.xlabel('[X]/K')
plt.ylim([0,1])
```

Out[2]: (0.0, 1.0)



## Cooperative binding

- precise regulation requires sharper threshold than the simple first order binding above
- often binding is cooperative and involves multiple TFs (e.g. homo- or hetero-dimers)
- similar to co-operative binding to of oxygen to hemoglobin

Consider transcription factors A and B

- TF-DNA interaction A:  $\epsilon_A$
- TF-DNA interaction B:  $\epsilon_B$
- ullet TF-TF interaction:  $J_{AB}$

The grand partition function is then (comp. Hiller's script)

$$\mathcal{Z} = 1 + ([A]/k_A)e^{-\epsilon_A/kT} + ([B]/k_B)e^{-\epsilon_B/kT} + ([A][B]/k_Ak_B)e^{-(\epsilon_A+\epsilon_B+J_{AB})/kT}$$
 (

Multiplying by  $k_A k_B$ , we find for the probability that both A and B are bound:

$$P_{AB} = \frac{[A][B]e^{-(\epsilon_A + \epsilon_B + J_{AB})}}{k_A k_B + \dots + [A][B]e^{-(\epsilon_A + \epsilon_B + J_{AB})}}$$
(2)

If cooperation is strong, this simplifies to:

$$P_{AB} \approx \frac{[A][B]e^{-(\epsilon_A + \epsilon_B + J_{AB})}}{k_A k_B + [A][B]e^{-(\epsilon_A + \epsilon_B + J_{AB})}} = \frac{[A][B]}{K + [A][B]}$$
(3)

This form of cooperative binding generalizes to m copies of A and m copies of B as follows.

$$P_{AB} \approx \frac{[A]^m [B]^n}{K + [A]^m [B]^n} \tag{4}$$

### Hill-functions and cooperativity

Cooperative binding by a single species is often parameterized by so the so called Hill coefficient n. The probability of activation if the activator is at concentration x is then

$$h(x)=rac{x^n}{K+x^n}$$

The higher the Hill-coefficient n, the more step-like the function is.  $K^{1/n}$  marks the value at which h(x)=0.5

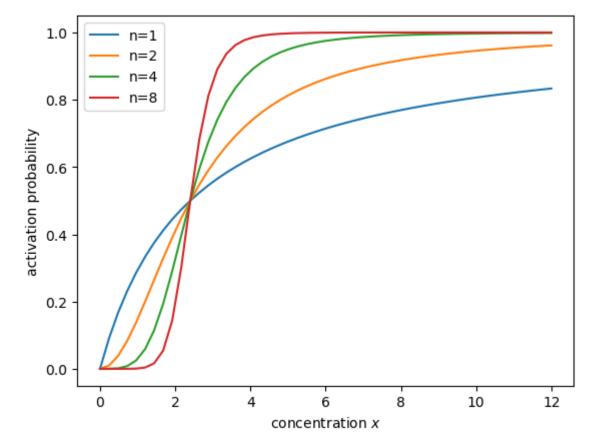
```
In [3]: import numpy as np
import matplotlib.pyplot as plt

k = 2.4
x = np.linspace(0,5*k,51)

for n in [1,2,4,8]:
    K = k**n
    plt.plot(x, x**n/(K+x**n), label=f"n={n}")

plt.legend()
plt.ylabel("activation probability")
plt.xlabel("concentration $x$")
```

Out[3]: Text(0.5, 0, 'concentration \$x\$')



### Repression

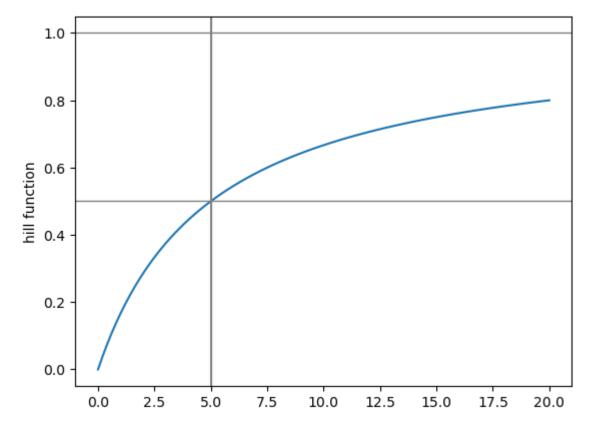
The above discussion considered binding of activators. If instead the role of the transcription factor is repression, the expression of the gene is given by 1 minus the binding probability.

$$g(x)=1-rac{x^n}{K+x^n}=rac{K}{K+x^n}$$

# Time dependent inputs and conditions

```
In [6]: from scipy.integrate import odeint
        import matplotlib.pyplot as plt
        import numpy as np
        # define a hill function with cooperativity n
        def hillfunc(x, k, n):
            return x^{**}n/(k^{**}n+x^{**}n)
        # define RHS of ODE governing production, note the explicit time dependen
        def dydt(y, t, k, n, alpha, beta):
            # case 1: x high first, low later
            if t<10:
                x=8
            else:
                x=2
            # case 2: sinusoidal fluctuation
            #x = 5*(1+np.sin(t*2*np.pi/20))
            return alpha*hillfunc(x, k, n) - beta*y
        # plot the hill function and indicate its 1/2 value and max value
        xvals = np.linspace(0,20,100)
        plt.plot(xvals, hillfunc(xvals, 5, 1))
        plt.axvline(5, c='grey')
        plt.axhline(.5, c='grey', lw=1)
        plt.axhline(1, c='grey', lw=1)
        plt.ylabel('hill function')
```

#### Out[6]: Text(0, 0.5, 'hill function')



```
In [7]: # Solve the solution to the ODE and graph the result
y0 = 0
alpha=1
beta=0.75
n=2
k=5

# array of time points to solve the ODE on
T = np.linspace(0,30,101)

sol = odeint(dydt, y0, T, (k, n, alpha, beta))
plt.plot(T, sol[:,0])
plt.axhline(alpha/beta, c='grey') # equilibrium at full expression
plt.xlabel('time')
plt.ylabel('expression')
plt.ylim(0,alpha/beta*1.1);
```

