lecture03b SimpleModelsOfGeneRegulation http://localhost:8890/nbconvert/html/lecture03b Sim...

Transcription factor binding

¢ a single TF binds to a binding site according to simple mass-action kinetic:

[X]

P(TF bOllIld) = m

where [X] is the concentration and K the affinity.

« binding is mediated by non-covalent interactions, so K will depend on salt
concentrations

« non-cooperative binding: P(TF bound) increases linearly with [X] and saturates at
1for [X] > K

In [2]: dimport numpy as np
import matplotlib.pyplot as plt

X = np.linspace(0,5,51)
plt.plot(x, x/(1+x))
plt.ylabel('P(bound)")
plt.xlabel('[X]/K")
plt.ylim([0,1])

OQut[2]: (0.0, 1.0)

1.0

0.8 A

o
(o]
1

P(bound)

o
S
1

0.2 A

0.0 1

[X1/K

1of5 23/11/2023, 08:29

lecture03b SimpleModelsOfGeneRegulation http://localhost:8890/nbconvert/html/lecture03b Sim...

Cooperative binding

e precise regulation requires sharper threshold than the simple first order binding
above
¢ often binding is cooperative and involves multiple TFs (e.g. homo- or hetero-dimers)

¢ similar to co-operative binding to of oxygen to hemoglobin
Consider transcription factors A and B

e TF-DNA interaction A: €4
o TF-DNA interaction B: ep
e TF-TF interaction: J4p

The grand partition function is then (comp. Hiller's script)

2 =1+ ([A]/ka)e M 1 ([B)/kp)e =/ + ([A][B]/Kakm)e ottt

Multiplying by k4 kg, we find for the probability that both A and B are bound:

[A] [B]e—(€A+EB+JAB)
kakp + - -- + [A][Ble (eatestJap)

If cooperation is strong, this simplifies to:

[A][Ble(catertTas) [A][B]
Pip~ - = (3)
kakp + [A][Ble (atestdar) K + [A][B]
This form of cooperative binding generalizes to m copies of A and m copies of B as
follows.
b By @
K+ [Am(B)

Hill-functions and cooperativity

Cooperative binding by a single species is often parameterized by so the so called Hill
coefficient n. The probability of activation if the activator is at concentration « is then

n

Me) = o

The higher the Hill-coefficient n, the more step-like the function is. K/ marks the value
at which h(z) = 0.5

20f5 23/11/2023, 08:29

lecture03b_SimpleModelsOfGeneRegulation http://localhost:8890/nbconvert/html/lecture03b_Sim...

In [3]: dimport numpy as np
import matplotlib.pyplot as plt

k
X

2.4
np.linspace(0,5*k,51)

for n in [1,2,4,8]:
K = k**n
plt.plot(x, x**n/(K+x**n), label=f"n={n}")

plt.legend()
plt.ylabel("activation probability")
plt.xlabel("concentration x")

OQut[3]: Text(0.5, 0, 'concentration x')

1.0 A

o o
(o)) o]
1 1

activation probability
©
F Y

0.2 A

0.0 A

concentration x

Repression

The above discussion considered binding of activators. If instead the role of the
transcription factor is repression, the expression of the gene is given by 1 minus the
binding probability.

z" B K
K+zr K+ z»

g9(z) =1~

Time dependent inputs and conditions

30f5 23/11/2023, 08:29

lecture03b_SimpleModelsOfGeneRegulation http://localhost:8890/nbconvert/html/lecture03b_Sim...

In [6]: from scipy.integrate import odeint
import matplotlib.pyplot as plt
import numpy as np

define a hill function with cooperativity n
def hillfunc(x, k, n):
return x**n/(k**n+x**n)

define RHS of ODE governing production, note the explicit time dependen
def dydt(y, t, k, n, alpha, beta):
case 1: x high first, low later
if t<10:
x=8
else:
x=2
case 2: sinusoidal fluctuation
#x = 5*(1+np.sin(t*2*np.pi/20))

return alpha*hillfunc(x, k, n) - beta*y

plot the hill function and indicate its 1/2 value and max value
xvals = np.linspace(0,20,100)

plt.plot(xvals, hillfunc(xvals, 5, 1))

plt.axvline(5, c='grey')

plt.axhline(.5, c='grey', lw=l)

plt.axhline(l, c='grey', lw=l)

plt.ylabel('hill function')

Out[6]: Text(0, 0.5, 'hill function')

1.0

0.8 A

0.6 A

hill function

0.4 A

0.2 A

0.0 A

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

4 of 5 23/11/2023, 08:29

lecture03b_SimpleModelsOfGeneRegulation http://localhost:8890/nbconvert/html/lecture03b_Sim...

In [7]: # Solve the solution to the ODE and graph the result
yo = 0
alpha=1
beta=0.75
n=2
k=5

array of time points to solve the ODE on
T = np.linspace(0,30,101)

sol = odeint(dydt, y0, T, (k, n, alpha, beta))

plt.plot(T, sol[:,0])

plt.axhline(alpha/beta, c='grey') # equilibrium at full expression
plt.xlabel('time")

plt.ylabel('expression')

plt.ylim(0,alpha/beta*1.1);

1.4

1.2 1

1.0 -

expression

0.2 1

0.0 I I 1 I I T T

time

50f5 23/11/2023, 08:29

