
Random walks and diffusion

In the next set of lectures, we will explore how molecules and assemblies move around

by thermal motion. Such random walks are the primary way molecules move around at

short distances and you will encounter diffusion over and over again during this lecture

and in other parts of biology. Such motion was descibed by a botanist Robert Brown

observing pollen under a microscope and is also known as "Brownian motion".

lecture04a_RandomWalks http://localhost:8889/nbconvert/html/lecture04a_Ra...

1 of 9 29/11/2023, 18:36

https://en.wikipedia.org/wiki/Brownian_motion
https://en.wikipedia.org/wiki/Brownian_motion

The following picture, for example, illustrates a "Fluorescence Recovery after

Photobleaching" experiment that is used to measure how molecules move around and

equilibrate in the cell:

source: BioQuant Heidelberg

In this experiment, a laser is used to destroy fluorophore in a small volume and we

observe how the initially dark spot starts to be green again since the intact fluorophore is

diffusing into the volume what was bleached. From the speed at which fluorescence

recovers, we can measure diffusion constants and intra-cellular transport properties.

At the end of this set of lectures, you should be in a position to interpret and analyze such

an experiment and understand the basic properties of diffusion.

Random walks

Before we venture into diffusion in continuous space, lets consider random walks on a

lattice:

• flip a coin: step left or right depending on head or tail

• repeat times

How often are you going to end up in what place? We can solve this either analytically, or

by trial and error with the computer. Let's try the latter first:

n

lecture04a_RandomWalks http://localhost:8889/nbconvert/html/lecture04a_Ra...

2 of 9 29/11/2023, 18:36

Text(0, 0.5, 'position')

In [1]: import matplotlib.pyplot as plt

import numpy as np

n_repetitions = 15

n_steps = 100

p=0.4

we repeat the entire process several times

for rep in range(n_repetitions):

record a trajectory of n_steps steps, starting at 0

traj = [0]

for step in range(n_steps):

at this step, we ask the computer to flip a coin: np.random.random()<0.5

if np.random.random()<p:

traj.append(traj[step] + 1)

else:

traj.append(traj[step] - 1)

plt.plot(traj)

plt.xlabel('step')

plt.ylabel('position')

Out[1]:

lecture04a_RandomWalks http://localhost:8889/nbconvert/html/lecture04a_Ra...

3 of 9 29/11/2023, 18:36

Text(0, 0.5, 'position')

Binomial distribution

We already mentioned that this type of one-dimensional random walk is essentially just

coin tossing. If after steps you have moved times to the right and times to the

left your position is

So to understand the distribution of where we end up after steps, we only need

to understand how often we observe heads out of coin tosses.

In [2]: # ALTERNATIVE IMPLEMENTATION

n_repetitions = 15

n_steps = 100

p=0.4

for rep in range(n_repetitions):

cumsum sums all elements in an array,

2*(np.random.random(size=n_steps)<p) - 1 is a list of +/- 1 of length n_steps

left_right_steps = 2*(np.random.random(size=n_steps)<p) - 1

sum these steps to calculate the position along the trajectory

traj = np.cumsum(left_right_steps)

plot

plt.plot(traj)

plt.xlabel('step')

plt.ylabel('position')

Out[2]:

n k n − k

x = k − (n − k) = 2k − n

p(x|n) n

k n

lecture04a_RandomWalks http://localhost:8889/nbconvert/html/lecture04a_Ra...

4 of 9 29/11/2023, 18:36

The probability to observe a particular series of outcomes like is

simply , where is the number of heads. But there is exactly one outcome

with , but outcomes with , etc. The total number of possibilities to achieve

 heads in trials is given by the binomial factor. Together, we find

This binomial distribution is hopefully familiar to you already. If not, take a minute to

refresh you knowledge, for example by watching this video.

The only difference between the coin tossing and the random walk is the transformation

from the number of heads to the position

The average position (often denoted as Expectation Value) is

Since the average number of heads we have .

The variance of the position is the average squared deviation from the mean

. In our case, it is given by

The most important features here are:

• the average position is linear in the number of steps with a speed

• the variance of the position is linear in the number of steps

• a linear variance implies that the standard deviation grows

+ − + − − − + + −

pk(1 − p)n−k k

k = 0 n k = 1

k n

P(k|n) = pk(1 − p)n−k n!

k!(n − k)!

x = 2k − n

E(x)

⟨x⟩ = 2⟨k⟩ − n

⟨k⟩ = np ⟨x⟩ = n(2p − 1)

V ar(x)

⟨(x − ⟨x⟩)2⟩

⟨(x − ⟨x⟩)2⟩ = ⟨(2(k − np))2⟩ = 4⟨(k − np)2⟩ = 4np(1 − p)

2p − 1

∼ √n

lecture04a_RandomWalks http://localhost:8889/nbconvert/html/lecture04a_Ra...

5 of 9 29/11/2023, 18:36

https://www.youtube.com/watch?v=8fqkQRjcR1M
https://www.youtube.com/watch?v=8fqkQRjcR1M

Text(0, 0.5, 'position')

In [31]: # the following plot will illustrate the behavior of the

random walks in a statistical sense.

We will create many random walks and look at the mean

and variance of the position after different numbers of steps

n_repetitions = 30

n_steps = 300

p=0.4

for rep in range(n_repetitions):

cumsum sums all elements in an array, 2*(np.random.random(size=n_steps)<p) - 1 is a

left_right_steps = 2*(np.random.random(size=n_steps)<p) - 1

sum these steps to calculate the position along the trajectory

traj = np.cumsum(left_right_steps)

plot

plt.plot(traj)

steps = np.arange(n_steps)

plot the average

plt.plot(steps, (2*p-1)*steps, lw=4, alpha=0.7, c='k')

plot the average +/- one standard deviation

one_std = np.sqrt(4*p*(1-p)*steps)

plt.plot(steps, (2*p-1)*steps+one_std, lw=3, alpha=0.7, c='r')

plt.plot(steps, (2*p-1)*steps-one_std, lw=3, alpha=0.7, c='r')

plot the average +/- two standard deviations

plt.plot(steps, (2*p-1)*steps+2*one_std, lw=2, alpha=0.7, c='b')

plt.plot(steps, (2*p-1)*steps-2*one_std, lw=2, alpha=0.7, c='b')

plt.xlabel('step')

plt.ylabel('position')

Out[31]:

lecture04a_RandomWalks http://localhost:8889/nbconvert/html/lecture04a_Ra...

6 of 9 29/11/2023, 18:36

Matrix of all trajectories: (1000, 201)

[[1 2 3 ... 51 52 53]

 [-1 -2 -3 ... 41 42 41]

 [1 0 -1 ... 25 26 25]

 ...

 [1 0 1 ... 49 48 47]

 [1 0 1 ... 47 48 49]

 [1 0 1 ... 43 42 41]]

(-50.0, 100.0)

In [36]: # Alternatively, we can plot the distributions.

Let make a long list of very many trajectories!

n_repetitions = 1000

n_steps = 201

p=0.6

all_traj = []

for rep in range(n_repetitions):

cumsum sums all elements in an array, 2*(np.random.random(size=n_steps)<p) - 1 is a

left_right_steps = 2*(np.random.random(size=n_steps)<p) - 1

sum these steps to calculate the position along the trajectory

traj = np.cumsum(left_right_steps)

all_traj.append(traj)

all_traj = np.array(all_traj)

print("Matrix of all trajectories:", all_traj.shape)

print(all_traj)

In [37]: # From all these trajectories, lets calculate mean and variance

after every step and plot the distributions.

mean_and_variance = []

for n in [10,20,50,100,200]:

plt.hist(all_traj[:,n], bins=np.arange(-n_steps, n_steps,2))

compute mean and variance for the next analysis.

mean_and_variance.append([n, np.mean(all_traj[:,n]), np.var(all_traj[:,

plt.xlabel('position')

plt.ylabel('number of counts')

plt.xlim([-50,100])

Out[37]:

lecture04a_RandomWalks http://localhost:8889/nbconvert/html/lecture04a_Ra...

7 of 9 29/11/2023, 18:36

<matplotlib.legend.Legend at 0x7f2cefc48b50>

From random walks to evolving distributions

Above we discussed how random walks are generated by taking random steps to the left

or right and showed that the distribution of the position after steps is given by the

binomial distribution . Now I want you to consider the distribution as the

object that is changing in time:

Can we express in terms of ?

To get to site after steps we need to have been at site:

• after steps and jumped right; this happens with probability:

• after steps and jumped left; this happens with probability:

From this, we conclude that

This equation will be starting point for our derivation of the diffusion equation in the next

video.

In [38]: # Instead of distributions, we can also plot mean and variance directly vs the number of s

mean_and_variance = np.array(mean_and_variance)

plt.figure()

steps = mean_and_variance[:,0]

plt.plot(steps, mean_and_variance[:,1], 'o', label='mean', c='C0')

plt.plot(steps, mean_and_variance[:,2], 'o', label='variance', c='C1')

plt.plot(steps, steps*(2*p-1), c='C0')

plt.plot(steps, 4*p*(1-p)*steps, c='C1')

plt.xlabel('steps')

plt.legend()

Out[38]:

n

P(x|n) P(x|n)

P(x|n + 1) P(x|n)

x n + 1

x − 1 n pP(x − 1|n)

x + 1 n

(1 − p)P(x + 1|n)

P(x|n + 1) = pP(x − 1|n) + (1 − p)P(x + 1|n)

lecture04a_RandomWalks http://localhost:8889/nbconvert/html/lecture04a_Ra...

8 of 9 29/11/2023, 18:36

Dig Deeper:

• confirm the expressions for mean and variance of the binomial distribution by explicit

computation.

• confirm that the equation is

solved by the binomial distribution with .

P(x|n + 1) = pP(x − 1|n) + (1 − p)P(x + 1|n)

x = 2k − n

In []:

lecture04a_RandomWalks http://localhost:8889/nbconvert/html/lecture04a_Ra...

9 of 9 29/11/2023, 18:36

