
The diffusion equation

Previously, we discussed random walks and showed that the distribution of a walker who

steps right with probability and left otherwise obeys the relation

This relation is discrete both in time (number of steps) and space (lattice points), In

reality, molecules move continously in time and space. We will relax this assumptions

and study what happens when we make the time and space discretization finer and finer.

Mathematically, we can take this to the infinitessimal limit, when treating problems

numerically, we need to maintain some level of discreteness.

We will start by making the time steps smaller.

p

P(x|n + 1) = pP(x − 1|n) + (1 − p)P(x + 1|n)

x

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

1 of 14 29/11/2023, 18:37

Instead of steps consider a continuous time variable and rates and

to hop right or left. Rates have the dimension 1/time and products of rates and time

intervals are dimensionless. The probability that the particle hops right in a small time

interval is therefore . With probability nothing happens.

The above equation then becomes

We now subtract and divide by to obtain:

The left hand side of the equation above is a discrete derivative and turn into if we

take the limit .

For each value of we have thus obtained a differential equation that couples

neighboring points in space!

n = 1, 2, 3, … t r l

Δt rΔt 1 − (r + l)Δt

P(x|t + Δt) =

nothing happens


(1 − (r + l)Δt)P(x|t) + rΔtP(x − 1|t)


hop right

+

hop left


lΔtP(x + 1|t)

ΔtP(x|t) Δt

=

nothing happens


−(r + l)P(x|t) + rP(x − 1|t)


hop right

+

hop left


lP(x + 1|t)
P(x|t + Δt) − P(x|t)

Δt

dP(x|t)

dt

Δt → 0

= r [P(x − 1|t) − P(x|t)] + l [P(x + 1|t) − P(x|t)]
dP(x|t)

dt

x

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

2 of 14 29/11/2023, 18:37

Initial condition and boundary conditions

We can solve this equation numerically starting from an initial condition

We will often restrict our analysis to a region . At the boundary, typically

one of two things can happen:

• particles are lost forever when they cross or . This is called an absorbing

boundary.

• particles never cross or . This is called a reflecting boundary.

Solving the random walk dynamics in continuous time

center region of array (entries 98--102): [-2 -1 0 1 2]

initial position entry 100: 0

P(x|0) = { 1 x = 0
0 otherwise

x ∈ [xmin, xmax]

xmin xmax

xmin xmax

In [2]: import numpy as np

import matplotlib.pyplot as plt

define the domain

xmin = -100

xmax = 101

x = np.arange(xmin, xmax)

#print("array of positions:", x)

print("center region of array (entries 98--102):", x[98:103])

print(f"initial position entry {-xmin}:", x[-xmin])

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

3 of 14 29/11/2023, 18:37

Text(0, 0.5, 'P(x)')

In [3]: # make an array with the initial condition

p = np.zeros_like(x, dtype=float)

p[100] = 1 # this position corresponds to x=0

plt.plot(x, p)

plt.title('initial condition')

plt.xlabel('x')

plt.ylabel('P(x)')

Out[3]:

In [4]: # define the hopping rates. Note these have units 1/time and don't need to add up to one

r = 0.2

l = 0.2

define the derivative

def dpdt(p, r, l):

dp = []

deal with the left boundary, xmin: only hopping to the right

dp.append(l*p[1] - r*p[0])

#loop over all positions that are not at the boundary (not the first, not the last)

for i in range(1,len(p)-1):

dp.append(r*(p[i-1] - p[i]) + l*(p[i+1] - p[i]))

dp.append(r*p[-2] - l*p[-1])

return np.array(dp)

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

4 of 14 29/11/2023, 18:37

<matplotlib.legend.Legend at 0x7f6e0f20b7c0>

In [5]: # the actual solution of the equation

dt = 0.01

t=0

for tmax in [10,50,100,200]:

while (t<tmax):

p += dt*dpdt(p,r,l)

t += dt

plt.plot(x,p, label=f't={tmax}')

plt.xlabel('position [discrete steps]')

plt.ylabel('probability $P(x|t)$')

plt.legend()

Out[5]:

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

5 of 14 29/11/2023, 18:37

The above implementation is slow

The reason for this slowness is that we are have two nested loops, one over the time

steps and within dpdt one over the positions. In a language like python, this is

inefficient.

But we can speed this up by a lot when using arrays. Arrays are lists of objects that all

have the same type (numbers in our case) and there are efficient functions that can

operate on arrays by applying the same operations to every element. In our case, we

want to do an operation like

r*(p[i-1] - p[i]) + l*(p[i+1] - p[i])

on the entire array (besides the boundary elements).

The layout of the array p is the following.

index: 0 1 2 3 4 5 6 7 8 9

value: p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

Knowing this layout, we can recast the operation above like

p[1:-1]: p1 p2 p3 p4 p5 p6 p7 p8 | *-(r+l)

p[0:-2]: p0 p1 p2 p3 p4 p5 p6 p7 | * r

p[2:]: p2 p3 p4 p5 p6 p7 p8 p9 | * l

and sum over every column of the matrix. This is achieved by

r*(p[0:-2] - p[1:-1]) + l*(p[2:] - p[1:-1])

and calculates dpdt for all indices other than the first and the last. These two we still

have to deal with separately, but almost all values can be handled in this vectorized form,

which is much faster.

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

6 of 14 29/11/2023, 18:37

<matplotlib.legend.Legend at 0x7f6e0f1f0820>

In [6]: # make an array with the initial condition

p = np.zeros_like(x, dtype=float)

p[100] = 1 # this position corresponds to x=0

define the hopping rates. Note these have units 1/time and don't need to add up to one

r = 0.2

l = 0.2

define the derivative

def dpdt(p, r, l):

dp = np.zeros_like(p)

for an array a=[0,1,2,3,4], a[1:] is [1,2,3,4] (everything but the first)

and a[:-1] is [0,1,2,3] (everything but the last)

dp[1:-1] += r*(p[:-2] - p[1:-1]) + l*(p[2:] - p[1:-1])

dp[0] += l*p[1] - r*p[0]

dp[-1] += r*p[-2] - l*p[-1]

return dp

the actual solution of the equation

dt = 0.01

t=0

for tmax in [10,50,100,200]:

while (t<tmax):

p += dt*dpdt(p,r,l)

t += dt

plt.plot(x,p, label=f't={tmax}')

plt.xlabel('position [discrete steps]')

plt.ylabel('probability $P(x|t)$')

plt.legend()

Out[6]:

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

7 of 14 29/11/2023, 18:37

Taking the continuous limit in space

Above, we took the discrete update rules for a random walk on discrete lattice points and

turned this into an equation that describes the evolution of the probability distribution in

continuous time. Now, we will tackle the problem of reducing the lattice spacing and take

the continuum limit in space. Let's just take the equation from above and replace by

We want to treat as a continuous function of and consider smaller and smaller

. Once is small enough, we can approximate by its Taylor series

Before substituting this into the above equation, not that all terms proportional to

disappear. Further note that the left/right terms proportional to have opposite

signs, while those proportional to have the same sign.

This then combines to the following expression

±1

±δx

= r [P(x − δx|t) − P(x|t)] + l [P(x + δx|t) − P(x|t)]
∂P(x|t)

∂t

P(x|t) x

δx δx P(x ± δx|t)

P(x ± δx|t) = P(x|t) ± δx + + ⋯
∂P(x|t)

∂x

δx2

2

∂2P(x|t)

∂x2

P(x|t)
∂P(x|t)

∂x
∂2P(x|t)

∂x2

= (r + l) + (l − r)δx
∂P(x|t)

∂t

δx2

2

∂2P(x|t)

∂x2

∂P(x|t)

∂x

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

8 of 14 29/11/2023, 18:37

https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Taylor_series

Now remember that and were the rate at which the particle hops left or right a

distance . Now that we are changing and considering the limit of smaller and

smaller , we need to adjust and . Ultimately, we want a description that does not

depend on the arbitrary choice of we have made and we have to realize that and

were just auxillary quantities tied to the discretization. Defining the diffusion constant

and the velocity as

we obtain the diffusion equation

Note that the rate and we initially defined are rates and have units of 1/time. The

diffusion constant therefore has units and the velocity has units of

.

r l

δx δx

δx r l

δx r s

D

v

D = and v = (r − l)δx
(r + l)δx2

2

= D − v
∂P(x|t)

∂t

∂2P(x|t)

∂x2

∂P(x|t)

∂x

r l

length2/time v

length/time

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

9 of 14 29/11/2023, 18:37

Solution of the diffusion equation

Depending on the initial conditions and the boundary conditions, there are different

approaches to solving the diffusion equation. We will first tackle the case where we

initially know exactly that all molecules are concentrated in a very small space and can

diffuse without limits, like injecting a small drop of coloring to the a hugh still tank of

water. In this case, the solution is

This curve is a Gaussian curve with mean and variance

• The center of the distribution translates at constant speed

• The width of the distribution increases as .

Note the direct correspondence between this behavior and what we observed in the

discrete case for the binomial distribution.

Text(0, 0.5, 'probability density')

P(x|t) = e−1

√4πDt

(x−vt)2

4Dt

mean = vt and variance = 2Dt

v

√2Dt

In [7]: # Plotting the solution to the diffusion equation

D = 1.0 # dimension length^2/time

v = 0.5 # dimension length/time

def gauss_solution(x, t, v, D):

return 1/np.sqrt(4*D*np.pi*t)*np.exp(-(x-v*t)**2/(4*D*t))

array of 101 points between -5 and 10

x = np.linspace(-5,10,101)

for t in [0.1, 1, 2, 10]:

plt.plot(x, gauss_solution(x, t, v, D), label=f"t={t}")

plt.legend()

plt.xlabel("position")

plt.ylabel("probability density")

Change v and D to see the resulting changes.

Out[7]:

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

10 of 14 29/11/2023, 18:37

Numerical solution to the diffusion equation

In many situations, we will need to solve the diffusion equation numerically. There are

complex algorithms out there to solve such partial differential equations, but we will follow

a simpler, more intuitve, but less accurate approach. We will undo the continuous limit

and solve it in discrete time and space.

So starting with equation

in continuous time and space.

If we discretize space in steps of , the right hand side of this equation corresponds our

equation above:

where and are related to and via

= D − v
∂P(x|t)

∂t

∂2P(x|t)

∂x2

∂P(x|t)

∂x

δx

= r [P(x − δx|t) − P(x|t)] + l [P(x + δx|t) − P(x|t)]
∂P(x|t)

∂t

r l D v

D = and v = (r − l)δx
(r + l)δx2

2

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

11 of 14 29/11/2023, 18:37

We can solve these for and as

left/right rates: 25.249999999999996 24.749999999999996

[<matplotlib.lines.Line2D at 0x7f6e0ef3c880>]

r l

r = + l = −
D

δx2

v

2δx

D

δx2

v

2δx

In [8]: # define the derivative

def dpdt(p, r, l):

dp = np.zeros_like(p)

dp[1:-1] += r*(p[:-2] - p[1:-1]) # jump to the right

dp[1:-1] += l*(p[2:] - p[1:-1]) # jump to the left

dp[0] += l*p[1] - r*p[0] # deal with the first point separately

dp[-1] += r*p[-2] - l*p[-1] # deal with the last point separately

return dp

In [9]: # define parameters and left/right hopping rates

D = 1

v = 0.1

dx = 0.2 # if dx is too small, numerical solution is unstable

dt = 0.005 # if dt is too large, numerical solution is unstable

r = D/dx**2 + v/dx/2

l = D/dx**2 - v/dx/2

print("left/right rates:", r, l)

In [10]: # set up the initial condition

x = np.arange(-5,5,dx)

p = np.zeros_like(x)

p[len(x)//2] = 1/dx # a peak at x=0 with weight 1/dx (total area =1)

plt.plot(x,p)

Out[10]:

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

12 of 14 29/11/2023, 18:37

Text(0.5, 0, 'position')

In [11]: # solve the equation using the forward Euler method

tmax = 0.4

t=0

while t<tmax:

p += dt*dpdt(p, r, l)

t += dt

plot the result

plt.plot(x,p, label="numeric solution")

plt.plot(x, gauss_solution(x, tmax, v, D), ls='--', label='Exact solution'

plt.legend()

plt.ylabel('probability density')

plt.xlabel('position')

Out[11]:

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

13 of 14 29/11/2023, 18:37

As you see, the numerical solution matches the exact one! And we get this match for

different choices of and as long as is sufficiently small and is sufficiently

large.

We will use such numerical solutions repeatedly throughout the course. So it is worth

going through this in some detail.

Dig deeper

• In some limits the binomial distribution is well approximated by the Gaussian

distribution. What are the similarities between the distributions? When is the discrete

nature of steps in the binomial important, when isn't it? Read up on the central limit

theorem!

• If you sum independently distributed random variables, means and variances are

additive. How does this relate to the behavior of the diffusion process?

• Verify the expression of and as a function of and . increases quadratically

with . Why is that? Why doesn only increase linearly with .

• Verify that the Gaussian distribution solves the diffusion equation.

δx δt δt δx

r l D v D

δx v δx

In []:

In []:

In []:

lecture04b_DiffusionEquation http://localhost:8889/nbconvert/html/lecture04b_Diffu...

14 of 14 29/11/2023, 18:37

