
Boundary and initial conditions

To solve the diffusion equation, you need to specify the distribution in the

beginning -- the initial condition -- and what happens at the ends of the range your are

studying -- the boundary conditions.

Boundary conditions for diffusion problems are typically of two forms:

• reflecting: impenetrable wall

• absorbing: everything that passes the boundary is removed

As initial condition, we will consider a case where the left half of our domain is filled and

the right half is empty.

Numerical solution

While it is possible to solve the diffusion equation with absorbing or reflecting boundary

conditions exactly, we fill focus here on numerical solution:

P(x|0)

lecture04c_BoundaryAndInitialConditions http://localhost:8889/nbconvert/html/lecture04c_Bou...

1 of 4 29/11/2023, 18:37

left/right rates: 499.9999999999999 499.9999999999999

Text(0.5, 0, 'position [um]')

In [1]: import numpy as np

import matplotlib.pyplot as plt

define the derivative

def dpdt(p, r, l):

dp = np.zeros_like(p)

dp[1:-1] += r*(p[:-2] - p[1:-1]) # jump to the right

dp[1:-1] += l*(p[2:] - p[1:-1]) # jump to the left

dp[0] += l*p[1] - r*p[0] # reflecting boundary (only right jump at xmin)

COMMENT OUT ONE OR THE OTHER OF THE FOLLOWING LINES

TO SWITCH BETWEEN ABSORBING OR REFLECTING BOUNDARY CONDITIONS

dp[-1] += r*p[-2] - l*p[-1] # reflecting boundary (only left jump at xmax)

#dp[-1] += r*p[-2] - (r+l)*p[-1] # absorbing boundary (left AND right jump at xmax)

return dp

define parameters and left/right hopping rates

D = 5 # um^2/s

v = 0.0

dx = 0.1 # if dx is too small, numerical solution is unstable

dt = 0.0002 # if dt is too large, numerical solution is unstable

r = D/dx**2 + v/dx/2

l = D/dx**2 - v/dx/2

print("left/right rates:", r, l)

set up the initial condition

xmax = 5 # um

x = np.arange(-xmax,xmax,dx)

p = np.zeros_like(x)

p[x<0] = 1/xmax # density 1/xmax for x<0, density 0 for x>0

solve the equation using the forward Euler method

tmax = 1

t=0

for tmax in [0,0.1, 0.5, 1,3, 10]:

while t<tmax:

p += dt*dpdt(p, r, l)

t += dt

plot the result

plt.plot(x,p, label=f"t={t:1.2f}s")

plt.legend()

plt.ylabel('probability density')

plt.xlabel('position [um]')

Out[1]:

lecture04c_BoundaryAndInitialConditions http://localhost:8889/nbconvert/html/lecture04c_Bou...

2 of 4 29/11/2023, 18:37

Reflecting initial condition

• The initial step function broadens and becomes flat at 1/2 the height.

• Total area under curve is constant.

• Time to spread a distance is about s. This is expected given that

Absorbing initial conditions

• At the absorbing initial condition, the probability distribtion goes linearly to 0

• The total amount of probability left gradually decreases.

Dig deeper

• Change xmax and explore how the time scale of equilibration changes!

• Explore the steady state behavior of the solution with reflecting boundaries with non-

zero !

• For an absorbing boundary at the right end, plot the amount of probability (

) that is left as a function of time.

• Modify the code such that both boundaries are absorbing.

• Change the initial condition.

xmax = 5μm t = 3

2Dt = 30μm2
≈ x2

max

v

∑x p(x|t)

In []:

In []:

lecture04c_BoundaryAndInitialConditions http://localhost:8889/nbconvert/html/lecture04c_Bou...

3 of 4 29/11/2023, 18:37

lecture04c_BoundaryAndInitialConditions http://localhost:8889/nbconvert/html/lecture04c_Bou...

4 of 4 29/11/2023, 18:37

