## Stokes-Einstein relation

What determines diffusion constants?

- size: The bigger, the slower ightarrow radius [length]
- temperature: The hotter the faster  $\rightarrow$  kT [energy]
- medium: What properties of the medium might matter?

## Viscosity

Particles diffuse more slowly in more viscous medium, e.g. honey compared to water. So what exactly is viscosity? If you are curious, read up on viscosity on wikipedia.



$$F\sim rac{Av}{d} \quad \Rightarrow \quad F=\eta rac{Av}{d}$$

Viscosity  $\eta$  is the proportionality constant linking movement of molecules to frictional force.

Viscosity has dimension

$$[\eta] = \left[rac{Fd}{Av}
ight] = rac{energy imes time}{volume} = rac{force imes time}{area}$$

Viscosity is typically measured in  $Ns/m^2$  and relevant values for us are

- water:  $0.001 \frac{Ns}{m^2}$  cytosol:  $0.003 \frac{Ns}{m^2}$

Coming back to our quest of understanding diffusion constants:

- size: The bigger, the slower ightarrow radius [length]
- temperature: The hotter the faster  $\rightarrow$  kT [energy]
- viscosity: [energy time/volume]

Diffusion constants have dimension [area/time]. How do you combine the above to obtain this dimension?

$$D\sim rac{kT}{r\eta}$$

Dimensional analysis suggests that kT, r, and  $\eta$  should combine as above. And this is the correct answer up to a numerical prefactor. Careful calculation yields the **Stokes-Einstein relation**:

$$D = rac{kT}{6\pi r\eta}$$

The remarkable fact about this equation is that combines **macroscopic** quantities like viscosity and temperature to make predictions about a **microscopic** quantity, namely the diffusion constant of a molecule.

## Rule of thumb

We will typically deal with temperatures around 300K (room temperature,  $kT \approx 4pN \times nm$ ) and are interested in the biological questions such that  $\eta \approx 0.003 Ns/m^2$ :

$$D=rac{4pN imes nm}{6\pi0.003Ns/m^2}rac{1}{r}pproxrac{\mu m^3}{15s}rac{1}{r}$$

We can use this rule of thumb to estimate diffusion coefficients of objects in cells. For a protein with radius 3nm, for example, we obtain  $D \approx 20 \mu m^2/s$ .

## Dig deeper

- Look up the viscosity of honey! How smaller would diffusion be? How long would it take a protein to diffuse  $10 \mu m$  in honey?
- How well do the diffusion constants we discussed in previous lectures conform with the Stokes-Einstein relation?

In [ ]:

| In [ | ]: |  |
|------|----|--|
| In [ | ]: |  |