
9/22/2020 week02a_linearAndExponentialGrowth

localhost:8890/nbconvert/html/week02a_linearAndExponentialGrowth.ipynb?download=false 1/7

Linear and exponential growth

A simple (silly) example

Consider a bucket to which you add 10ml of water per second. The amount of water in the bucket (lets call it
) will increase over time as

where is the initial amount of water. This is a simple example, but it will highlight some basic features of
simple differential equations.

y(t)

y(t) = + t × 10y0
ml

s
y0

This very same problem can be described as "the amount of water increases by 10ml/s" which is just a
differential equation:

The right hand side is a constant -- the rate of addition -- . Note that this constant has dimensions

volume over time. These are the same dimensions as (,) as it has to be. With
every equation we consider, you should convince yourself that the dimensions match up!

= 10
dy

dt

ml

s

α = 10 ml
s

dy

dt
[y] = volume [t] = time

9/22/2020 week02a_linearAndExponentialGrowth

localhost:8890/nbconvert/html/week02a_linearAndExponentialGrowth.ipynb?download=false 2/7

Direct integration
We have already written down the solution of the differential equation above. More formally, we can solve this
equation by integrating both sides from :

The left hand side is

and hence simple the amount of water that was added between time 0 and time . The right hand side is

Together with we recover the solution given above.

This is of course an extremely simple example, but it will teach us fundamental properties of differential
equations

a differential equation doesn't determine the solution uniquely, we get to choose the initial condition

if the differential equation is such that the right hand side does not depend on , we can integrate it
directly.

0 … t

d = αd∫
t

0

dy

dt′
t′ ∫

t

0

t′

d = y(t) − y(0)∫
t

0

dy

dt′
t′

t

αd = αt∫
t

0

t′

y(0) = y0

y(0) = y0

y

Solving differential equation with a computer
A differential equations are typically introduced as describing change in discrete little steps and then taking
the limit to every smaller steps to define the differential equation. To solve differential equations with the
computer, we do have to keep these steps finite and the above problem turns into a finite difference equation

For this example, we already know the answer. But learning how to solve ODEs with a computer will allow us
to solve many equation to which no simple closed solution is known. It is therefore useful to explore how we
would solve this equation numerically. The key idea is to rearrange the above equation as

We just start with and add one step at a time. The computer will do this for us dutifully.

y(t) − y(t − Δt) = Δy(t) = Δt = αΔt
dy

dt

y(t) = y(t − Δt) + αΔt

y(t) = y0 αΔt

9/22/2020 week02a_linearAndExponentialGrowth

localhost:8890/nbconvert/html/week02a_linearAndExponentialGrowth.ipynb?download=false 3/7

In [1]:

y_0 = 3 # this is a quantity with units ml

t_0 = 0 # we start at 0 seconds

y = [y_0] # this is the list in which we will gather y(t_0), y(t_1), y(t_2), e

tc

t = [t_0] # this list will contain the time points t_0, t_1, t_2

alpha = 7 # this is in ml/s

Delta_t = 0.25 # discrete time intervals

n_steps = 100 # number of steps we want to integrate, the final time will be t_

0 + n_steps*Delta_t

for i in range(n_steps):

 t.append(t[i] + Delta_t) # the new time t_[i+1] = t_[i]+Delta_t

 y.append(y[i] + alpha*Delta_t) # the new time y_[i+1] = y_[i]+alpha*Delta_t

print("The first 10 time points:", t[:10])

print("The first 10 time values:", y[:10])

Lets graph these results!

In [3]:

import matplotlib.pyplot as plt

plt.plot(t, y, label='water level')

plt.xlabel('time [s]') # label axis and specify units!

plt.ylabel('content [ml]')

plt.legend()

The first 10 time points: [0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.7

5, 2.0, 2.25]

The first 10 time values: [3, 4.75, 6.5, 8.25, 10.0, 11.75, 13.5, 1

5.25, 17.0, 18.75]

Out[3]:

<matplotlib.legend.Legend at 0x7f1abc560c50>

9/22/2020 week02a_linearAndExponentialGrowth

localhost:8890/nbconvert/html/week02a_linearAndExponentialGrowth.ipynb?download=false 4/7

change the values of y_0 , Delta_t , n_steps , and alpha and see what happens.

Exponential growth
The above example is so simple that the answer is self-evident and it might have seemed silly to do all this
song and dance. Now, lets consider something slightly more complicated -- for example exponential growth
of bacteria.

If the bacteria divide every minutes and we started with a single cell, we would go from

etc after a time

τ

1 → 2 → 4 → 8 …

0 → τ → 2τ → 3τ …

This assumes that every cells divide exactly minutes after is born and cells stay syncronized forever. This
is probably not the case: there is a distribution of division times not a single value .

Alternatively, we could assume that the cells are completely desynchronized. In this case, the number of cells
 would change in a time interval approximately as

where is the fraction of cells that divide during the time interval . This finite difference equation can be
readily rearranged to resemble a differential equation

This differential equation means "the rate at which changes is proportional to " -- this is the hall-
mark of exponential growth. This equation is again one with an exactly known solution given by

where is the initial number of cells. (Confirm this by direct differentiation).

τ

τ

n(t) Δt

n(t + Δt) = n(t) + n(t)
Δt

τ
Δt
τ

Δt

= = n(t)/τlim
Δt→0

n(t + Δt) − n(t)

Δt

dn(t)

dt

n(t) n(t)

n(t) = n0e
t/τ

n0

Numerical solution
While exponential growth is again a case that as an exact solution, it is instructive to solve it numerically. We
will use this example to demonstrate some challenges in numerical integration of differential equations. In
particular, we will investigate how the accuracy of the solution depends on the step size .Δt

9/22/2020 week02a_linearAndExponentialGrowth

localhost:8890/nbconvert/html/week02a_linearAndExponentialGrowth.ipynb?download=false 5/7

In [4]:

import numpy as np # import of numerics library -- we need the exponential func

tion

tau = 30 # division time of 30 minutes

n_0 = 1

t_0 = 0

tmax = 10*tau # simulate this process for 10 times the average division time.

for Delta_t in [10,3,1]:

 n = [n_0]

 t = [t_0]

 for i in range(tmax//Delta_t): # number of steps necessary is tmax divided

by step size = tmax/Delta_t

 n.append(n[i] + n[i]*Delta_t/tau)

 t.append(t[i] + Delta_t)

 plt.plot(t, n, label=f"Delta t={Delta_t}")

plt.plot(t, np.exp(np.array(t)/tau), label="exact")

plt.xlabel("time [minutes]")

plt.ylabel("population size")

plt.legend()

Out[4]:

<matplotlib.legend.Legend at 0x7f1aaf4d5650>

9/22/2020 week02a_linearAndExponentialGrowth

localhost:8890/nbconvert/html/week02a_linearAndExponentialGrowth.ipynb?download=false 6/7

Accuracy depends on step size
As we saw above, the accuracy of the solution depends quite critically on the step size Delta t . The
problem is that at every step, we slightly undershoot since the curve continues to bend upwards:

Sometimes, it is sufficient to simply choose a small enough step size. But more generally one needs to use a
more sophisticated method than the simple forward stepping we have done here (called "Forward-Euler"
method (https://en.wikipedia.org/wiki/Euler_method)). A good compromise is typically the Runge-Kutta
method (https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods) which is implemented in most
numerical computation packages.

For more conceptual purposes and simple exploration, the forward Euler method is still useful and we will
continue to use it.

https://en.wikipedia.org/wiki/Euler_method
https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods

9/22/2020 week02a_linearAndExponentialGrowth

localhost:8890/nbconvert/html/week02a_linearAndExponentialGrowth.ipynb?download=false 7/7

Dig deeper
In the above example, instead of varying , vary and . Plot the results on a linear and a
logarithmic y-scale

Solve the ODE using the method of Separation of variables
(https://en.wikipedia.org/wiki/Separation_of_variables)
redo the integration of the exponential growth problem using a the standard ODE integrator from scipy
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html)

Δt n0 τ

= n(t)/τ
dn(t)

dt

In []:

https://en.wikipedia.org/wiki/Separation_of_variables
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

