9/22/2020 week02b_logisticGrowth

Logistic Growth

In the previous notebook, we explored linear and exponential growth. In both cases, growth goes on forever -
- a situation that doesn't typically happen for example since bacteria run out of food. So lets walk through
such an example:

« the food initially available is C|y

« division of a bacterium requires & amount of food. Hence there can at most by N = CO/:L“ new
bacteria at the end

« the food remaining after time tis C'(t) = Cy — = X (n(t) — ny).

Cc®)
C(]T

« lets assume the rate of division decreases proportionally with the available food

20 4

15 4

10 4

growth rate [1/hour]

05 A

0.0 -
000 025 050 075 100
relative nutrient availability

With these assumptions and definitions, we find a difference equation
C(t)
COT

=n(t) + At x nt) X (1 — x(n(t();’— n0)>
T 0

= n(t) + At x @x (1_—"(t)_"°>

n(t + At) = n(t) + At x n(t) x

N

Rearranging this into a differential equation in the usual way results in

. n(t + At) — n(t) _ dn(t) n(t) y (1 _n(t) - n0>

At—0 At d T N

This can be further simplified by realizing that whenever it matters, the n(t) > ny so that we can simply
drop n from the right hand side to obtain the standard logistic differential equation:

dn(t) n(t) (1 n(t))

dt T
Here NN is often called carrying capacity.

- N

localhost:8890/nbconvert/html/week02b_logisticGrowth.ipynb?download=false 1/4

9/22/2020 week02b_logisticGrowth

Before we start solving this equation, lets look at the case 1(t) < N'!

In this case, the equation simplifies

dn(t) n(t) n(t)
= 1—n(t)/N) ~ —=
= (L= n(t)/N) ~ =
This is simply exponential growth like we have seen before, but we expect this approximation only to be valid
while
n(t) ~ nge!/” < N
In [1]:

define function that return derivative
def dndt(n, tau, N):
return n/tau*(1-n/N)

In [2]:

tau = 30 # division time of 30 minutes

=
= o W

0

ol

S5 o2

n 0]
t = [0]
Delta t = 0.1
tmax = 1l0*tau
for i in range(int(tmax//Delta t)): # number of steps necessary is tmax divided
by step size = tmax/Delta t
n.append(n[i] + Delta t * dndt(n[i],tau,N))
t.append(t[i] + Delta t)

localhost:8890/nbconvert/html/week02b_logisticGrowth.ipynb?download=false 2/4

9/22/2020 week02b_logisticGrowth

In [3]:

import matplotlib.pyplot as plt

plt.plot(t, n, label=f"Numerical solution")
plt.xlabel("time [minutes]")
plt.ylabel("population size")

plt.legend()

Out[3]:
<matplotlib.legend.Legend at Ox7f50dc380950>

100 1 — Numerical solution

population size

o 50 100 150 200 250 300
time [minutes]

The logistic equation has an exact solution:

et/'r

N/ng—1+et/T

n(t) =N

Att = 0 we have n(0) = ng as it has to be. At very large ¢, the solution tends to V.

The solution to the logistic equation can be parameterized in different ways and we'll explore these more in
the exercises.

localhost:8890/nbconvert/html/week02b_logisticGrowth.ipynb?download=false 3/4

9/22/2020 week02b_logisticGrowth

In [4]:

import numpy as np
def logistic(t, tau, n 0, N):
t arr = np.array(t)
return N*np.exp(t _arr/tau)/(N/n_0-1+np.exp(t_arr/tau))

plt.plot(t, logistic(t,tau, n 0,N), label="Exact solution")
plt.plot(t, n O0*np.exp(np.array(t)/tau), label="Approximate solution")
plt.plot(t, n, label=f"Numerical solution")

plt.xlabel("time [minutes]")

plt.ylabel("population size")

plt.ylim(0,N*1.1)

plt.legend()

Out[4]:
<matplotlib.legend.Legend at Ox7f50d191af50>

. II
wod Exact sglutlun . f
Approximate solution |
—— Numerical solution
E{J -
H
‘i
£ %07
B
K]
=
g -
20 1
I} T T T T T T T
o 50 100 150 200 250 300
time [minutes]
Dig deeper

« change T, ng, and IV in the above graphs and explore how the results change.
« verify the solution to the logistic equation.
« graph the output on a logarithmic scale.

In []:

In [1:

localhost:8890/nbconvert/html/week02b_logisticGrowth.ipynb?download=false 4/4

