
9/22/2020 week02b_logisticGrowth

localhost:8890/nbconvert/html/week02b_logisticGrowth.ipynb?download=false 1/4

Logistic Growth
In the previous notebook, we explored linear and exponential growth. In both cases, growth goes on forever -
- a situation that doesn't typically happen for example since bacteria run out of food. So lets walk through
such an example:

the food initially available is
division of a bacterium requires amount of food. Hence there can at most by new
bacteria at the end
the food remaining after time is .

lets assume the rate of division decreases proportionally with the available food

C0

x N = /xC0

t C(t) = − x × (n(t) −)C0 n0
C(t)

τC0

With these assumptions and definitions, we find a difference equation

n(t + Δt) = n(t) + Δt × n(t) ×
C(t)

τC0

= n(t) + Δt × × (1 −)
n(t)

τ

x(n(t) −)n0

C0

= n(t) + Δt × × (1 −)
n(t)

τ

n(t) − n0

N

Rearranging this into a differential equation in the usual way results in

= = × (1 −)lim
Δt→0

n(t + Δt) − n(t)

Δt

dn(t)

dt

n(t)

τ

n(t) − n0

N

This can be further simplified by realizing that whenever it matters, the so that we can simply
drop from the right hand side to obtain the standard logistic differential equation:

Here is often called carrying capacity.

n(t) ≫ n0

n0

= (1 −)
dn(t)

dt

n(t)

τ

n(t)

N

N

9/22/2020 week02b_logisticGrowth

localhost:8890/nbconvert/html/week02b_logisticGrowth.ipynb?download=false 2/4

Before we start solving this equation, lets look at the case !

In this case, the equation simplifies

This is simply exponential growth like we have seen before, but we expect this approximation only to be valid
while

n(t) ≪ N

= (1 − n(t)/N) ≈
dn(t)

dt

n(t)

τ

n(t)

τ

n(t) ≈ ≪ Nn0e
t/τ

In [1]:

define function that return derivative

def dndt(n, tau, N):

 return n/tau*(1-n/N)

In [2]:

tau = 30 # division time of 30 minutes

N = 100

n_0 = 1

n = [n_0]

t = [0]

Delta_t = 0.1

tmax = 10*tau

for i in range(int(tmax//Delta_t)): # number of steps necessary is tmax divided

by step size = tmax/Delta_t

 n.append(n[i] + Delta_t * dndt(n[i],tau,N))

 t.append(t[i] + Delta_t)

9/22/2020 week02b_logisticGrowth

localhost:8890/nbconvert/html/week02b_logisticGrowth.ipynb?download=false 3/4

In [3]:

import matplotlib.pyplot as plt

plt.plot(t, n, label=f"Numerical solution")

plt.xlabel("time [minutes]")

plt.ylabel("population size")

plt.legend()

The logistic equation has an exact solution:

At we have as it has to be. At very large , the solution tends to .

The solution to the logistic equation can be parameterized in different ways and we'll explore these more in
the exercises.

n(t) = N
et/τ

N/ − 1 +n0 et/τ

t = 0 n(0) = n0 t N

Out[3]:

<matplotlib.legend.Legend at 0x7f50dc380950>

9/22/2020 week02b_logisticGrowth

localhost:8890/nbconvert/html/week02b_logisticGrowth.ipynb?download=false 4/4

In [4]:

import numpy as np

def logistic(t, tau, n_0, N):

 t_arr = np.array(t)

 return N*np.exp(t_arr/tau)/(N/n_0-1+np.exp(t_arr/tau))

plt.plot(t, logistic(t,tau, n_0,N), label="Exact solution")

plt.plot(t, n_0*np.exp(np.array(t)/tau), label="Approximate solution")

plt.plot(t, n, label=f"Numerical solution")

plt.xlabel("time [minutes]")

plt.ylabel("population size")

plt.ylim(0,N*1.1)

plt.legend()

Dig deeper
change , , and in the above graphs and explore how the results change.
verify the solution to the logistic equation.
graph the output on a logarithmic scale.

τ n0 N

In []:

In []:

Out[4]:

<matplotlib.legend.Legend at 0x7f50d191af50>

