
9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 1/10

Random walks and diffusion
In the next set of lectures, we will explore how molecules and assemblies move around by thermal motion.
Such random walks are the primary way molecules move around at short distances and you will encounter
diffusion over and over again during this lecture and in other parts of biology. Such motion was descibed by a
botanist Robert Brown (https://en.wikipedia.org/wiki/Brownian_motion) observing pollen under a microscope
and is also known as "Brownian motion".

https://en.wikipedia.org/wiki/Brownian_motion

9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 2/10

The following picture, for example, illustrates a "Fluorescence Recovery after Photobleaching" experiment
that is used to measure how molecules move around and equilibrate in the cell:

source: BioQuant Heidelberg

In this experiment, a laser is used to destroy fluorophore in a small volume and we observe how the initially
dark spot starts to be green again since the intact fluorophore is diffusing into the volume what was bleached.
From the speed at which fluorescence recovers, we can measure diffusion constants and intra-cellular
transport properties.

At the end of this set of lectures, you should be in a position to interpret and analyze such an experiment and
understand the basic properties of diffusion.

Random walks
Before we venture into diffusion in continuous space, lets consider random walks on a lattice:

flip a coin: step left or right depending on head or tail
repeat times

How often are you going to end up in what place? We can solve this either analytically, or by trial and error
with the computer. Let's try the latter first:

n

9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 3/10

In [15]:

import matplotlib.pyplot as plt

import numpy as np

n_repetitions = 15

n_steps = 100

p=0.5

we repeat the entire process several times

for rep in range(n_repetitions):

 # record a trajectory of n_steps steps, starting at 0

 traj = [0]

 for step in range(n_steps):

 # at this step, we ask the computer to flip a coin: np.random.random()<

0.5

 if np.random.random()<p:

 traj.append(traj[step] + 1)

 else:

 traj.append(traj[step] - 1)

 plt.plot(traj)

plt.xlabel('step')

plt.ylabel('position')

Out[15]:

Text(0, 0.5, 'position')

9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 4/10

In [18]:

ALTERNATIVE IMPLEMENTATION

n_repetitions = 15

n_steps = 100

p=0.5

for rep in range(n_repetitions):

 # cumsum sums all elements in an array,

 # 2*(np.random.random(size=n_steps)<p) - 1 is a list of +/- 1 of length n_st

eps

 left_right_steps = 2*(np.random.random(size=n_steps)<p) - 1

 # sum these steps to calculate the position along the trajectory

 traj = np.cumsum(left_right_steps)

 # plot

 plt.plot(traj)

plt.xlabel('step')

plt.ylabel('position')

Binomial distribution
We already mentioned that this type of one-dimensional random walk is essentially just coin tossing. If after

 steps you have moved times to the right and times to the left your position is

So to understand the distribution of where we end up after steps, we only need to understand how
often we observe heads out of coin tosses.

n k n − k

x = k − (n − k) = 2k − n

p(x|n) n

k n

The probability to observe a particular series of outcomes like is simply
, where is the number of heads. But there is exactly one outcome with , but

outcomes with , etc. The total number of possibilities to achieve heads in trials is given by the
binomial factor. Together, we find

+ − + − − − + + −
(1 − ppk)n−k k k = 0 n

k = 1 k n

P (k|n) = (1 − ppk)n−k n!

k!(n − k)!

Out[18]:

Text(0, 0.5, 'position')

9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 5/10

This binomial distribution is hopefully familiar to you already. If not, take a minute to refresh you knowledge,
for example by watching this video (https://www.youtube.com/watch?v=8fqkQRjcR1M).

The only difference between the coin tossing and the random walk is the transformation from the number of
heads to the position

The average position (often denoted as Expectation Value) is

Since the average number of heads we have .

The variance of the position is the average squared deviation from the mean . In our
case, it is given by

x = 2k − n

E(x)
⟨x⟩ = 2⟨k⟩ − n

⟨k⟩ = np ⟨x⟩ = n(2p − 1)

V ar(x) ⟨(x − ⟨x⟩ ⟩)2

⟨(x − ⟨x⟩ ⟩ = ⟨(2(k − np) ⟩ = 4⟨(k − np ⟩ = 4np(1 − p))2)2)2

The most important features here are:

the average position is linear in the number of steps with a speed
the variance of the position is linear in the number of steps
a linear variance implies that the standard deviation grows

2p − 1

∼ n−−√

https://www.youtube.com/watch?v=8fqkQRjcR1M

9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 6/10

In [22]:

the following plot will illustrate the behavior of the

random walks in a statistical sense.

We will create many random walks and look at the mean

and variance of the position after different numbers of steps

n_repetitions = 30

n_steps = 300

p=0.6

for rep in range(n_repetitions):

 # cumsum sums all elements in an array, 2*(np.random.random(size=n_steps)<p)

- 1 is a list of +/- 1 of length n_steps

 left_right_steps = 2*(np.random.random(size=n_steps)<p) - 1

 # sum these steps to calculate the position along the trajectory

 traj = np.cumsum(left_right_steps)

 # plot

 plt.plot(traj)

steps = np.arange(n_steps)

plot the average

plt.plot(steps, (2*p-1)*steps, lw=4, alpha=0.7, c='k')

plot the average +/- one standard deviation

one_std = np.sqrt(4*p*(1-p)*steps)

plt.plot(steps, (2*p-1)*steps+one_std, lw=3, alpha=0.7, c='r')

plt.plot(steps, (2*p-1)*steps-one_std, lw=3, alpha=0.7, c='r')

plot the average +/- two standard deviations

plt.plot(steps, (2*p-1)*steps+2*one_std, lw=2, alpha=0.7, c='b')

plt.plot(steps, (2*p-1)*steps-2*one_std, lw=2, alpha=0.7, c='b')

plt.xlabel('step')

plt.ylabel('position')

Out[22]:

Text(0, 0.5, 'position')

9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 7/10

In [23]:

Alternatively, we can plot the distributions.

Let make a long list of very many trajectories!

n_repetitions = 1000

n_steps = 201

p=0.6

all_traj = []

for rep in range(n_repetitions):

 # cumsum sums all elements in an array, 2*(np.random.random(size=n_steps)<p)

- 1 is a list of +/- 1 of length n_steps

 left_right_steps = 2*(np.random.random(size=n_steps)<p) - 1

 # sum these steps to calculate the position along the trajectory

 traj = np.cumsum(left_right_steps)

 all_traj.append(traj)

all_traj = np.array(all_traj)

print("Matrix of all trajectories:", all_traj.shape)

print(all_traj)

Matrix of all trajectories: (1000, 201)

[[-1 0 -1 ... 45 44 43]

[1 2 1 ... 47 46 45]

[-1 0 1 ... 51 52 53]

...

[1 2 3 ... 57 58 59]

[1 2 1 ... 29 28 29]

[-1 0 1 ... 27 28 29]]

9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 8/10

In [24]:

From all these trajectories, lets calculate mean and variance

after every step and plot the distributions.

mean_and_variance = []

for n in [10,20,50,100,200]:

 plt.hist(all_traj[:,n], bins=np.arange(-n_steps, n_steps,2))

 # compute mean and variance for the next analysis.

 mean_and_variance.append([n, np.mean(all_traj[:,n]), np.var(all_traj[:,n])])

plt.xlabel('position')

plt.ylabel('number of counts')

plt.xlim([-50,100])

Out[24]:

(-50, 100)

9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 9/10

In [25]:

Instead of distributions, we can also plot mean and variance directly vs the n

umber of steps

mean_and_variance = np.array(mean_and_variance)

plt.figure()

steps = mean_and_variance[:,0]

plt.plot(steps, mean_and_variance[:,1], 'o', label='mean', c='C0')

plt.plot(steps, mean_and_variance[:,2], 'o', label='variance', c='C1')

plt.plot(steps, steps*(2*p-1), c='C0')

plt.plot(steps, 4*p*(1-p)*steps, c='C1')

plt.xlabel('steps')

plt.legend()

From random walks to evolving distributions
Above we discussed how random walks are generated by taking random steps to the left or right and showed
that the distribution of the position after steps is given by the binomial distribution . Now I want you
to consider the distribution as the object that is changing in time:

Can we express in terms of ?

n P (x|n)
P (x|n)

P (x|n + 1) (x|n)

To get to site after steps we need to have been at site:

 after steps and jumped right; this happens with probability:
 after steps and jumped left; this happens with probability:

x n + 1

x − 1 n pP (x − 1|n)
x + 1 n (1 − p)P (x + 1|n)

From this, we conclude that

This equation will be starting point for our derivation of the diffusion equation in the next video.

P (x|n + 1) = pP (x − 1|n) + (1 − p)P (x + 1|n)

Out[25]:

<matplotlib.legend.Legend at 0x7fce5a3b1d50>

9/23/2020 week03a_RandomWalks

localhost:8888/nbconvert/html/week03a_RandomWalks.ipynb?download=false 10/10

Dig Deeper:
confirm the expressions for mean and variance of the binomial distribution by explicit computation.
confirm that the equation is solved by the
binomial distribution with .

P (x|n + 1) = pP (x − 1|n) + (1 − p)P (x + 1|n)
x = 2k − n

