
9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 1/11

The diffusion equation
in the previous video, we discussed random walks and showed that the distribution of a walker who steps
right with probability and left otherwise obeys the relation

This relation is discrete both in time (number of steps) and space (lattice points), In reality, molecules move
continously in time and space. We will relax this assumptions and study what happens when we make the
time and space discretization finer and finer. Mathematically, we can take this to the infinitessimal limit, when
treating problems numerically, we need to maintain some level of discreteness.

We will start by making the time steps smaller.

p

P(x|n + 1) = pP(x − 1|n) + (1 − p)P(x + 1|n)

x

Instead of steps consider a continuous time variable and rates and to hop right or left.
Rates have the dimension 1/time and products of rates and time intervals are dimensionless. The probability
that the particle hops right in a small time interval is therefore . With probability
nothing happens.

The above equation then becomes

n = 1, 2, 3, … t r l

Δt rΔt 1 − (r + l)Δt

P (x|t + Δt) = + +(1 − (r + l)Δt)P (x|t)

nothing happens

rΔtP (x − 1|t)

hop right

lΔtP (x + 1|t)

hop left

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 2/11

We now subtract and divide by to obtain:ΔtP (x|t) Δt

= + +
P (x|t + Δt) − P (x|t)

Δt
−(r + l)P (x|t)

nothing happens

rP (x − 1|t)

hop right

lP (x + 1|t)

hop left

The left hand side of the equation above is a discrete derivative and turn into if we take the limit
.

For each value of we have thus obtained a differential equation that couples neighboring points in space!

dP(x|t)

dt

Δt → 0

= r [P (x − 1|t) − P (x|t)] + l [P (x + 1|t) − P (x|t)]
dP (x|t)

dt

x

Initial condition and boundary conditions
We can solve this equation numerically starting from an initial condition

We will often restrict our analysis to a region . At the boundary, typically one of two things
can happen:

particles are lost forever when they cross or . This is called an absorbing boundary.
particles never cross or . This is called a reflecting boundary.

P (x|0) = {
1
0

x = 0
otherwise

x ∈ [,]xmin xmax

xmin xmax

xmin xmax

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 3/11

Solving the random walk dynamics in continuous time
After this short digression to introduce arrays, we will now solve the above equation for the probability of a
random walker to by in position after time numerically.x t

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 4/11

In [13]:

import numpy as np

import matplotlib.pyplot as plt

define the domain

xmin = -100

xmax = 100

x = np.arange(xmin, xmax)

make an array with the initial condition

p = np.zeros_like(x, dtype=float)

p[xmin] = 1 # this position corresponds to x=0

define the hopping rates. Note these have units 1/time and don't need to add u

p to one

r = 0.5

l = 0.4

define the derivative

def dpdt(p, r, l):

 dp = np.zeros_like(p)

 # for an array a=[0,1,2,3,4], a[1:] is [1,2,3,4] (everything but the first)

 # and a[:-1] is [0,1,2,3] (everything but the last)

 dp[1:-1] += r*(p[:-2] - p[1:-1]) + l*(p[2:] - p[1:-1])

 dp[0] += l*p[1] - r*p[0]

 dp[-1] += r*p[-2] - l*p[-1]

 return dp

the actual solution of the equation

dt = 0.01

t=0

for tmax in [10,50,100,200]:

 while (t<tmax):

 p += dt*dpdt(p,r,l)

 t += dt

 plt.plot(x,p, label=f't={tmax}')

plt.xlabel('position [discrete steps]')

plt.ylabel('probability $P(x|t)$')

plt.legend()

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 5/11

Taking the continuous limit in space
Above, we took the discrete update rules for a random walk on discrete lattice points and turned this into an
equation that describes the evolution of the probability distribution in continuous time. Now, we will tackle the
problem of reducing the lattice spacing and take the continuum limit in space. Let's just take the equation
from above and replace by ±1 ±δx

= r [P (x − δx|t) − P (x|t)] + l [P (x + δx|t) − P (x|t)]
dP (x|t)

dt

We want to treat as a continuous function of and consider smaller and smaller . Once is
small enough, we can approximate by its Taylor series
(https://en.wikipedia.org/wiki/Taylor_series)

Before substituting this into the above equation, not that all terms proportional to disappear. Further

note that the left/right terms proportional to have opposite signs, while those proportional to

have the same sign.

This then combines to the following expression

P (x|t) x δx δx

P (x ± δx|t)

P (x ± δx|t) = P (x|t) ± δx + + ⋯
dP (x|t)

dx

δx2

2

P (x|t)d2

dx2

P (x|t)
dP(x|t)

dx

P(x|t)d2

dx2

= (r + l) + (l − r)δx
dP (x|t)

dt

δx2

2

P (x|t)d2

dx2

dP (x|t)

dx

Out[13]:

<matplotlib.legend.Legend at 0x7f3148732f10>

https://en.wikipedia.org/wiki/Taylor_series

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 6/11

Now remember that and were the rate at which the particle hops left or right a distance . Now that we
are changing and considering the limit of smaller and smaller , we need to adjust and . Ultimately,
we want a description that does not depend on the arbitrary choice of we have made and we have to
realize that and were just auxillary quantities tied to the discretization. Defining the diffusion constant
and the velocity as

we obtain the diffusion equation

Note that the rate and we initially defined are rates and have units of 1/time. The diffusion constant
therefore has units and the velocity has units of .

r l δx

δx δx r l

δx

r s D

v

D = and v = (r − l)δx
(r + l)δx2

2

= D − v
dP(x|t)

dt

P(x|t)d2

dx2

dP(x|t)

dx

r l

/timelength2 v length/time

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 7/11

Solution of the diffusion equation
Depending on the initial conditions and the boundary conditions, there are different approaches to solving the
diffusion equation. We will first tackle the case where we initially know exactly that all molecules are
concentrated in a very small space and can diffuse without limits, like injecting a small drop of coloring to the
a hugh still tank of water. In this case, the solution is

P(x|t) =
1

4πDt
− −−−√

e−
(x−vt)2

4Dt

This curve is a Gaussian curve with mean and variance

The center of the distribution translates at constant speed
The width of the distribution increases as .

Note the direct correspondence between this behavior and what we observed in the discrete case for the
binomial distribution.

mean = vt and variance = 2Dt

v

2Dt
− −−√

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 8/11

In [14]:

Plotting the solution to the diffusion equation

D = 1.0 # dimension length^2/time

v = 0.5 # dimension length/time

def gauss_solution(x, t, v, D):

 return 1/np.sqrt(4*D*np.pi*t)*np.exp(-(x-v*t)**2/(4*D*t))

array of 101 points between -5 and 10

x = np.linspace(-5,10,101)

for t in [0.1, 1, 2, 10]:

 plt.plot(x, gauss_solution(x, t, v, D), label=f"t={t}")

plt.legend()

plt.xlabel("position")

plt.ylabel("probability density")

Change v and D to see the resulting changes.

Out[14]:

Text(0, 0.5, 'probability density')

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 9/11

Numerical solution to the diffusion equation
In many situations, we will need to solve the diffusion equation numerically. There are complex algorithms out
there to solve such partial differential equations, but we will follow a simpler, more intuitve, but less accurate
approach. We will undo the continuous limit and solve it in discrete time and space.

So starting with equation

in continuous time and space.

= D − v
dP (x|t)

dt

P (x|t)d2

dx2

dP (x|t)

dx

If we discretize space in steps of , the right hand side of this equation corresponds our equation above:

where and are related to and via

δx

= r [P (x − δx|t) − P (x|t)] + l [P (x + δx|t) − P (x|t)]
dP (x|t)

dt

r l D v

D = and v = (r − l)δx
(r + l)δx2

2

We can solve these for and asr l

r = + l = −
D

δx2

v

2δx

D

δx2

v

2δx

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 10/11

In [23]:

define the derivative

def dpdt(p, r, l):

 dp = np.zeros_like(p)

 dp[1:-1] += r*(p[:-2] - p[1:-1]) # jump to the right

 dp[1:-1] += l*(p[2:] - p[1:-1]) # jump to the left

 dp[0] += l*p[1] - r*p[0] # deal with the first point separately

 dp[-1] += r*p[-2] - l*p[-1] # deal with the last point separately

 return dp

define parameters and left/right hopping rates

D = 1

v = 0.1

dx = 0.2 # if dx is too small, numerical solution is unstable

dt = 0.005 # if dt is too large, numerical solution is unstable

r = D/dx**2 + v/dx/2

l = D/dx**2 - v/dx/2

print("left/right rates:", r, l)

set up the initial condition

x = np.arange(-5,5,dx)

p = np.zeros_like(x)

p[len(x)//2] = 1/dx # a peak at x=0 with weight 1/dx (total area =1)

solve the equation using the forward Euler method

tmax = 1

t=0

while t<tmax:

 p += dt*dpdt(p, r, l)

 t += dt

plot the result

plt.plot(x,p, label="numeric solution")

plt.plot(x, gauss_solution(x, tmax, v, D), ls='--', label='Exact solution')

plt.legend()

plt.ylabel('probability density')

plt.xlabel('position')

9/23/2020 week03b_diffusionEquation

localhost:8888/nbconvert/html/week03b_diffusionEquation.ipynb?download=false 11/11

As you see, the numerical solution matches the exact one! And we get this match for different choices of
and as long as is sufficiently small and is sufficiently large.

We will use such numerical solutions repeatedly throughout the course. So it is worth going through this in
some detail.

δx

δt δt δx

Dig deeper

In some limits the binomial distribution is well approximated by the Gaussian distribution. What are the
similarities between the distributions? When is the discrete nature of steps in the binomial important,
when isn't it? Read up on the central limit theorem!
If you sum independently distributed random variables, means and variances are additive. How does this
relate to the behavior of the diffusion process?
Verify the expression of and as a function of and . increases quadratically with . Why is
that? Why doesn only increase linearly with .
Verify that the Gaussian distribution solves the diffusion equation.

r l D v D δx

v δx

In []:

left/right rates: 25.249999999999996 24.749999999999996

Out[23]:

Text(0.5, 0, 'position')

