
9/23/2020 week03c_BoundaryAndInitialConditions

localhost:8888/nbconvert/html/week03c_BoundaryAndInitialConditions.ipynb?download=false 1/3

Boundary and initial conditions
To solve the diffusion equation, you need to specify the distribution in the beginning -- the initial
condition -- and what happens at the ends of the range your are studying -- the boundary conditions.

Boundary conditions for diffusion problems are typically of two forms:

reflecting: impenetrable wall
absorbing: everything that passes the boundary is removed

P (x|0)

As initial condition, we will consider a case where the left half of our domain is filled and the right half is
empty.

Numerical solution
While it is possible to solve the diffusion equation with absorbing or reflecting boundary conditions exactly,
we fill focus here on numerical solution:

9/23/2020 week03c_BoundaryAndInitialConditions

localhost:8888/nbconvert/html/week03c_BoundaryAndInitialConditions.ipynb?download=false 2/3

In [32]:

import numpy as np

import matplotlib.pyplot as plt

define the derivative

def dpdt(p, r, l):

 dp = np.zeros_like(p)

 dp[1:-1] += r*(p[:-2] - p[1:-1]) # jump to the right

 dp[1:-1] += l*(p[2:] - p[1:-1]) # jump to the left

 dp[0] += l*p[1] - r*p[0] # reflecting boundary

 dp[-1] += r*p[-2] - l*p[-1] # reflecting boundary

 #dp[-1] += r*p[-2] - (r+l)*p[-1] # absorbing boundary

 return dp

define parameters and left/right hopping rates

D = 5 # um^2/s

v = 0.0

dx = 0.25 # if dx is too small, numerical solution is unstable

dt = 0.002 # if dt is too large, numerical solution is unstable

r = D/dx**2 + v/dx/2

l = D/dx**2 - v/dx/2

print("left/right rates:", r, l)

set up the initial condition

xmax = 5 # um

x = np.arange(-xmax,xmax,dx)

p = np.zeros_like(x)

p[x<0] = 1/xmax # density 1/xmax for x<0, density 0 for x>0

solve the equation using the forward Euler method

tmax = 1

t=0

for tmax in [0,0.1, 0.5, 1,3, 10]:

 while t<tmax:

 p += dt*dpdt(p, r, l)

 t += dt

 # plot the result

 plt.plot(x,p, label=f"t={t:1.2f}s")

plt.legend()

plt.ylabel('probability density')

plt.xlabel('position [um]')

9/23/2020 week03c_BoundaryAndInitialConditions

localhost:8888/nbconvert/html/week03c_BoundaryAndInitialConditions.ipynb?download=false 3/3

Reflecting initial condition
The initial step function broadens and becomes flat at 1/2 the height.
Total area under curve is constant.
Time to spread a distance is about s. This is expected given that = 5μmxmax t = 3
2Dt = 30μ ≈m2 x2

max

Absorbing initial conditions
At the absorbing initial condition, the probability distribtion goes linearly to 0
The total amount of probability left gradually decreases.

Dig deeper

Change xmax and explore how the time scale of equilibration changes!
Explore the steady state behavior of the solution with reflecting boundaries with non-zero !
For an absorbing boundary at the right end, plot the amount of probability () that is left as a
function of time.
Modify the code such that both boundaries are absorbing.
Change the initial condition.

v

p(x|t)∑x

In []:

left/right rates: 80.0 80.0

Out[32]:

Text(0.5, 0, 'position [um]')

