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Boundary and initial conditions
To solve the diffusion equation, you need to specify the distribution  in the beginning -- the initial
condition -- and what happens at the ends of the range your are studying -- the boundary conditions.

Boundary conditions for diffusion problems are typically of two forms:

reflecting: impenetrable wall
absorbing: everything that passes the boundary is removed

P (x|0)

As initial condition, we will consider a case where the left half of our domain is filled and the right half is
empty.

Numerical solution
While it is possible to solve the diffusion equation with absorbing or reflecting boundary conditions exactly,
we fill focus here on numerical solution:
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In [32]:

import numpy as np

import matplotlib.pyplot as plt 

# define the derivative

def dpdt(p, r, l): 

   dp = np.zeros_like(p) 

   dp[1:-1] += r*(p[:-2] - p[1:-1])  # jump to the right 

   dp[1:-1] += l*(p[2:] - p[1:-1]) # jump to the left 

   dp[0] += l*p[1] - r*p[0]     # reflecting boundary 

   dp[-1] += r*p[-2] - l*p[-1]  # reflecting boundary 

   #dp[-1] += r*p[-2] - (r+l)*p[-1]  # absorbing boundary 

   return dp 

# define parameters and left/right hopping rates

D = 5       # um^2/s

v = 0.0

dx = 0.25    # if dx is too small, numerical solution is unstable

dt = 0.002  # if dt is too large, numerical solution is unstable 

r = D/dx**2 + v/dx/2

l = D/dx**2 - v/dx/2

print("left/right rates:", r, l) 

# set up the initial condition

xmax = 5    # um

x = np.arange(-xmax,xmax,dx)

p = np.zeros_like(x)

p[x<0] = 1/xmax   # density 1/xmax for x<0, density 0 for x>0 

# solve the equation using the forward Euler method

tmax = 1

t=0

for tmax in [0,0.1, 0.5, 1,3, 10]: 

   while t<tmax: 

       p += dt*dpdt(p, r, l) 

       t += dt 

   # plot the result 

   plt.plot(x,p, label=f"t={t:1.2f}s") 

plt.legend()

plt.ylabel('probability density')

plt.xlabel('position  [um]')
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Reflecting initial condition
The initial step function broadens and becomes flat at 1/2 the height.
Total area under curve is constant.
Time to spread a distance  is about s. This is expected given that = 5μmxmax t = 3
2Dt = 30μ ≈m2 x2

max

Absorbing initial conditions
At the absorbing initial condition, the probability distribtion goes linearly to 0
The total amount of probability left gradually decreases.

Dig deeper

Change xmax  and explore how the time scale of equilibration changes!
Explore the steady state behavior of the solution with reflecting boundaries with non-zero !
For an absorbing boundary at the right end, plot the amount of probability ( ) that is left as a
function of time.
Modify the code such that both boundaries are absorbing.
Change the initial condition.

v

p(x|t)∑x
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left/right rates: 80.0 80.0 

Out[32]:

Text(0.5, 0, 'position  [um]')


