# **Stokes-Einstein relation**

What determines diffusion constants?

- size: The bigger, the slower  $\rightarrow$  radius [length]
- temperature: The hotter the faster  $\rightarrow$  kT [energy]
- · medium: What properties of the medium might matter?

### Viscosity

Particles diffuse more slowly in more viscous medium, e.g. honey compared to water. So what exactly is viscosity? If you are curious, read up on viscosity on wikipedia (https://en.wikipedia.org/wiki/Viscosity#Simple\_definition).



Viscosity  $\eta$  is the proportionality constant linking movement of molecules to frictional force.

Viscosity has dimension

$$\left[\eta
ight] = \left[rac{Fd}{Av}
ight] = rac{energy imes time}{volume} = rac{force imes time}{area}$$

Viscosity is typically measured in  $Ns/m^2$  and relevant values for us are

- water:  $0.001 \frac{Ns}{m^2}$  cytosol:  $0.003 \frac{Ns}{m^2}$

Coming back to our quest of understanding diffusion constants:

- size: The bigger, the slower ightarrow radius [length]
- temperature: The hotter the faster  $\rightarrow$  kT [energy]
- viscosity: [energy time/volume]

Diffusion constants have dimension [area/time]. How do you combine the above to obtain this dimension?



Dimensional analysis suggests that kT, r, and  $\eta$  should combine as above. And this is the correct answer up to a numerical prefactor. Careful calculation yields the <u>Stokes-Einstein relation</u> (<u>https://en.wikipedia.org/wiki/Einstein\_relation\_(kinetic\_theory)</u>#Stokes%E2%80%93Einstein\_equation):

| D | — | kT           |
|---|---|--------------|
|   |   | $6\pi r\eta$ |

The remarkable fact about this equation is that combines **macroscopic** quantities like viscosity and temperature to make predictions about a **microscopic** quantity, namely the diffusion constant of a molecule.

## **Rule of thumb**

We will typically deal with temperatures around 300K (room temperature,  $kT \approx 4pN \times nm$ ) and are interested in the biological questions such that  $\eta \approx 0.003 Ns/m^2$ :

$$D = rac{4pN imes nm}{6\pi 0.003 Ns/m^2} rac{1}{r} pprox rac{\mu m^3}{15s} rac{1}{r},$$

We can use this rule of thumb to estimate diffusion coefficients of objects in cells. For a protein with radius 3nm, for example, we obtain  $D \approx 20 \mu m^2/s$ .

### **Dig deeper**

- Look up the viscosity of honey! How smaller would diffusion be? How long would it take a protein to diffuse  $10 \mu m$  in honey?
- How well do the diffusion constants we discussed in previous lectures conform with the Stokes-Einstein relation?

#### In [ ]: