
11/13/2020 week11b_StiffPolymers

localhost:8889/nbconvert/html/week11b_StiffPolymers.ipynb?download=false 1/7

Stiff polymers
In the previous section, we assumed that the direction of monomers completely randomizes at each junction.
In reality, the degree to which direction changes is of course constrained and not completely random. There
are different ways in which such stiffness can be incorporated into models and the overall conformation of the
polymer depends on the relation of stiffness to the length of the polymer.

There are two major ways in which such effects are modelled. One is by restricting the bond angles of
discrete and stiff segments (freely rotating chain), the other is by modeling the polymer as a continuous chain
with some stiffness (worm-like chain).

Freely rotating chain
In this model, bond of two segments is contraint such that the polymer can rotate freely around the azimuth,
but has a constrained polar angle , either on average or to a fixed value:

This has the consequence that the direction of the polymer changes slowly if is small, which we now
explore via simulations:

θ

⟨ ⟩ = cos θe ⃗ ie ⃗ i+1

θ

11/13/2020 week11b_StiffPolymers

localhost:8889/nbconvert/html/week11b_StiffPolymers.ipynb?download=false 2/7

In [23]:

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

return a vector on the sphere with angles theta (polar) and phi (azimuth)

see https://en.wikipedia.org/wiki/Spherical_coordinate_system

def unit_vector(phi, theta):

 x = np.sin(theta) * np.cos(phi)

 y = np.sin(theta) * np.sin(phi)

 z = np.cos(theta)

 return (x,y,z)

return a matrix that rotates a vector 0,0,1 to vec

def rotation_matrix(vec):

 length_xy = np.sqrt(np.sum(vec[:2]**2))

 length = np.sqrt(np.sum(vec**2))

 phi = np.arccos(vec[0]/length_xy)*np.sign(vec[1])

 theta = np.arccos(vec[2]/length)

 xy_rotation = np.array([[np.cos(phi), -np.sin(phi),0],

 [np.sin(phi), np.cos(phi),0],

 [0, 0, 1]])

 xz_rotation = np.array([[np.cos(theta), 0 , np.sin(theta)],

 [0, 1, 0],

 [-np.sin(theta), 0, np.cos(theta)]])

 # first rotate the vector by theta in the xz plane, followed by phi in the x

y plane

 return xy_rotation.dot(xz_rotation)

11/13/2020 week11b_StiffPolymers

localhost:8889/nbconvert/html/week11b_StiffPolymers.ipynb?download=false 3/7

In [36]:

pick a random new direction given the last direction vec and the angle constra

int theta

def new_direction(vec, theta):

 phi = np.random.uniform(0,2*np.pi)

 e = unit_vector(phi, theta)

 return rotation_matrix(vec).dot(e)

make a freely rotating chain of length N with angle constraint theta and segme

nt length d

def freely_rotating_chain(N, d, theta):

 # initial position

 positions = [np.array([0,0,0])]

 directions = [np.array([1,0,0])]

 for n in range(N):

 # increment position

 directions.append(new_direction(directions[-1], theta))

 positions.append(positions[-1] + d*directions[-1])

 return np.array(positions)

d = 1

N = 10000

theta = 10/180*np.pi

positions = freely_rotating_chain(N,d=1, theta=theta)

plot the trajectory

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.plot(positions[:,0], positions[:,1], positions[:,2])

plt.tight_layout()

On short length scales, these polymers look stiff, at least for small . On long length scales, this is again just
a random coil.

In fact, one can calculate that the end-to-end distance of such a freely rotating chain

θ

⟨ ⟩ ≈ NR⃗
2

d2 1 + cos θ

1 − cos θ

11/13/2020 week11b_StiffPolymers

localhost:8889/nbconvert/html/week11b_StiffPolymers.ipynb?download=false 4/7

In [37]:

n_max=10

N = 5000

n_vals = range(0,N,N//10)

for ti, theta in enumerate([0.4, 0.8, 1.2]):

 Rsq = []

 for n in range(n_max):

 polymer = freely_rotating_chain(N, d=1, theta=theta)

 Rsq.append([np.sum(polymer[i]**2) for i in n_vals])

 Rsq = np.array(Rsq)

 plt.errorbar(n_vals, Rsq.mean(axis=0), np.std(Rsq, axis=0)/np.sqrt(n_max-1),

marker='o', lw=0, elinewidth=2, c=f'C{ti}')

 plt.plot(n_vals, np.array(n_vals)*(1+np.cos(theta))/(1-np.cos(theta)), c=f'C

{ti}')

plt.xlabel('length of chain')

plt.ylabel('squared end-to-end distance')

Out[37]:

Text(0, 0.5, 'squared end-to-end distance')

11/13/2020 week11b_StiffPolymers

localhost:8889/nbconvert/html/week11b_StiffPolymers.ipynb?download=false 5/7

Kuhn length and effective models
The end-to-end distance of the freely rotating chain behaves similarly to the freely jointed chain, but instead
of

we find

This behavior is confirmed by our simulation above:

This is an important observation: On large length scales, polymers "forget" their microscopic
complexity and simply behave like random coils. Properties of many polymers can be understood by
mapping them onto the simple freely jointed chain be defining an effective segment length. This length is
known as the Kuhn length (https://en.wikipedia.org/wiki/Kuhn_length) . For the freely-rotating chain, this
would be

Hans Kuhn (https://de.wikipedia.org/wiki/Hans_Kuhn_(Physikochemiker)) worked at the University of Basel
for several years.

⟨ ⟩ ≈ NR⃗ 2 d2

⟨ ⟩ ≈ NR⃗ 2 d2 1 + cos θ

1 − cos θ

lk

= dlk
1 + cos θ

1 − cos θ

− −−−−−−−
√

Using this insight, we can for example calculate the effective segment length of chromatin from the data by
Engh et al (see previous video). The measurement tells us how the end-to-end distance chances with the

contour length of the polymer. Together with the relation , we can calculate of chromatin.⟨ ⟩ ≈ NR⃗ 2 l2k lk

https://en.wikipedia.org/wiki/Kuhn_length
https://de.wikipedia.org/wiki/Hans_Kuhn_(Physikochemiker

11/13/2020 week11b_StiffPolymers

localhost:8889/nbconvert/html/week11b_StiffPolymers.ipynb?download=false 6/7

Worm-like chain model
Instead of modeling a polymer as discrete stiff segments, the worm-like chain model assumes a continuous
filament (much like a spaghetti) that resists bending due to an intrinsic stiffness. Models of this type are for
example appropriate to model double stranded DNA that is very stiff on the scale of individual base pairs.

Now that we don't have free joints between segments, we need to get an idea over what length this polymer
is effectively stiff and over what length it is floppy in a cell under thermal activation. Consider a WLC (worm-
like chain) with stiffness . Bending an arc-segment of length into a circle with radius requires an
energy of

By thermal activation, the polymer will chance direction if the bending energy of a segment of length into a
circle of radius equals the thermal energy:

To define this length scale more precisely, it is customary to consider the correlation of tangent vectors
and at two locations and and define the persistence length as the length scale on which the
direction correlation decays:

The Kuhn length of the WLC model happens to be twice the persistence length, which is given by
.

κ L R

κL

2R2

l

∼ l

= ∼ kT ⇒ l ∼
κl

2l2
κ

2l

κ

kT
(s)e ⃗

(t)e ⃗ s t lp

⟨ (s) (t)⟩ = exp(−|t − s|/)e ⃗ e ⃗ lp

= κ/kTlp

11/13/2020 week11b_StiffPolymers

localhost:8889/nbconvert/html/week11b_StiffPolymers.ipynb?download=false 7/7

Persistence length of different biopolymers
dsDNA: 50nm
actin filaments:
microtubule: 1.4 mm

17μm

Dig deeper

What happens in the freely-rotating chain model for , and ?
Recapitulate the calculation of the end-to-end distance in the script!

θ = 0 π/2 π

