
11/25/2020 week12a_IntroToGeneRegulation

localhost:8890/nbconvert/html/week12a_IntroToGeneRegulation.ipynb?download=false 1/9

Gene regulation ¶
The expression of genes is tightly regulated in space and time.

Transcription factors: proteins that bind to DNA and enhance or suppress expression
Sigma factors (transcription initiation)
Chromatin state: the genome can be packaged away and silenced
DNA modifications: methylation, histone marks
Protein modifications, dimerizations, etc

The molecular biology of these process is very complicated and we will focus here on general aspects of the
problem.

How abundant are transcription factors?

Abundance of transcription factors in E.coli. From bionumbers.org with original data from [Li et al., 2014]. The
data are shown as a cumulative distribution, that is the y-axis show the fraction of transcription factors that
have an abundance below the value on the x-axis. Cumulative distributions might be a little unfamiliar to
read, but have many advantages over classical histograms since they don’t require a choice of binning.

Activators: rare, often under 10 copies
Repressors: more common typically 100 copies

11/25/2020 week12a_IntroToGeneRegulation

localhost:8890/nbconvert/html/week12a_IntroToGeneRegulation.ipynb?download=false 2/9

Uniqueness of binding site
In a random string of ACGT of length one million, every 10-mer of bases will occur once on average. 10
bases is also the length of one turn of the DNA double helix and a transcription factor can meaningfully
interact with about that many base pairs. Hence transcription factor binding in bacteria is approximately
unique. This is reflected in the typical architecture where one, two, or sometimes three transcription factors
regulate a gene or operon.

In eurkaryotes with 1000-fold larger genomes, TF binding is rarely unique. Instead, regulation is
combinatorial with many layers contributing.

11/25/2020 week12a_IntroToGeneRegulation

localhost:8890/nbconvert/html/week12a_IntroToGeneRegulation.ipynb?download=false 3/9

In [1]:

Bacterium

print("\n\nBacterium\n")

L = 5e6

for k in range(2,13):

 print(f"number specific of {k}-mers in a genome of length {L}: {L/4**k:1.2f}

")

human

print("\n\nHuman\n")

L = 3e9

for k in range(2,24,2):

 print(f"number specific of {k}-mers in a genome of length {L}: {L/4**k:1.2f}

")

Bacterium

number specific of 2-mers in a genome of length 5000000.0: 312500.0

0

number specific of 3-mers in a genome of length 5000000.0: 78125.00

number specific of 4-mers in a genome of length 5000000.0: 19531.25

number specific of 5-mers in a genome of length 5000000.0: 4882.81

number specific of 6-mers in a genome of length 5000000.0: 1220.70

number specific of 7-mers in a genome of length 5000000.0: 305.18

number specific of 8-mers in a genome of length 5000000.0: 76.29

number specific of 9-mers in a genome of length 5000000.0: 19.07

number specific of 10-mers in a genome of length 5000000.0: 4.77

number specific of 11-mers in a genome of length 5000000.0: 1.19

number specific of 12-mers in a genome of length 5000000.0: 0.30

Human

number specific of 2-mers in a genome of length 3000000000.0: 18750

0000.00

number specific of 4-mers in a genome of length 3000000000.0: 11718

750.00

number specific of 6-mers in a genome of length 3000000000.0: 73242

1.88

number specific of 8-mers in a genome of length 3000000000.0: 4577

6.37

number specific of 10-mers in a genome of length 3000000000.0: 286

1.02

number specific of 12-mers in a genome of length 3000000000.0: 178.

81

number specific of 14-mers in a genome of length 3000000000.0: 11.1

8

number specific of 16-mers in a genome of length 3000000000.0: 0.70

number specific of 18-mers in a genome of length 3000000000.0: 0.04

number specific of 20-mers in a genome of length 3000000000.0: 0.00

number specific of 22-mers in a genome of length 3000000000.0: 0.00

11/25/2020 week12a_IntroToGeneRegulation

localhost:8890/nbconvert/html/week12a_IntroToGeneRegulation.ipynb?download=false 4/9

Transcription factor search
need to find a binding site (typically one or a few) in a genome of millions of bases
only a small number of TFs diffuse around in the cell.
yet binding is very rapid and faster than expectation from the diffusion limit.

Diffusion limit

 (large molecule)
length scale of TF/DNA interaction: (base pair height determines the accuracy on which TF
and DNA have to interact)

On-rate:

Experimentally measured rate is 100 times larger!

= 100μ /sDTF m2

≈ 0μ /sDDNA m2

r = 0.3μm

= 4π(+)r = 4π × 100 × 3 × μ /s ≈ 0.4μ /s ≈ 2 ×κD DTF DDNA 10−4 m3 m3 108M −1s−1

11/25/2020 week12a_IntroToGeneRegulation

localhost:8890/nbconvert/html/week12a_IntroToGeneRegulation.ipynb?download=false 5/9

Combined 1D and 3D search
A potential solution this conundrum was proposed by Hippel and Berg (http://www.jbc.org/content/264/2/675)
and elaborated by Mirny et al (http://stacks.iop.org/1751-8121/42/i=43/a=434013): Combined 1D search
along the genome and 3D search in the cytosol:

1D: don't waste time floating around placed where there is no DNA, but looking at the same place many
times
3D: less redundant.

http://www.jbc.org/content/264/2/675
http://stacks.iop.org/1751-8121/42/i=43/a=434013

11/25/2020 week12a_IntroToGeneRegulation

localhost:8890/nbconvert/html/week12a_IntroToGeneRegulation.ipynb?download=false 6/9

If combined 1D/3D diffusion was the mechanism by which TFs find their target, how should they be dividing
their time between 3D and 1D search?

The total time until the target is found can be expressed as the sum over multiple rounds of 3D/1D search:

If bases are searched in a round of 1D search, rounds are necessary (genome length).

Since , we obtain for the average search time

The search time is minimal when

which requires , i.e., the TF should spend equal times on the DNA and in solution. The mean
search time is therefore

= (+)ts ∑
i=1

K

τ1D,i τ3D,i

l = L/lK̄ L

l ∼ 2D1Dτ1D
− −−−−−−√

= (+)ts
L

2D1Dτ1D
− −−−−−−√

τ1D τ3D

= (−) = 0
dts

dτ1D

L

2 2D1D
− −−−−√

τ
−1/2
1D τ3Dτ

−3/2
1D

=τ1D τ3D

= Lts
2τ1D

D1D

− −−−−
√

11/25/2020 week12a_IntroToGeneRegulation

localhost:8890/nbconvert/html/week12a_IntroToGeneRegulation.ipynb?download=false 7/9

In [2]:

import numpy as np

import matplotlib.pyplot as plt

define the time spend on the DNA or in the cytosol

tau1D = 100

tau3D = 100

hop_off = 1/tau1D

L = 1e4

nmax = 200

assume binding site is at position 0

target = 0

data = []

for i in range(nmax):

 # pick a random position

 x0 = np.random.randint(0,L)

 total_time = 0

 cycles = 0

 while x0!=target:

 p = np.random.random()

 if p<hop_off:

 # detach and reattach after time tau3D

 x0 = np.random.randint(0,L)

 total_time += tau3D

 cycles += 1

 else:

 # determine left or right hop

 if p>hop_off + (1-hop_off)*0.5:

 x0 += 1

 else:

 x0 -= 1

 # make sure the chromosome is a circle L+x -> x

 x0 = x0%L

 total_time += 1

 data.append((cycles, total_time))

data = np.array(data)

plt.hist(data[:,1])

mean_cycles, mean_time = data.mean(axis=0)

print(f"Average number of cycles: {mean_cycles:1.2f}, expected {L/np.sqrt(2*tau1

D):1.2f}")

print(f"Average time: {mean_time:1.2f}, expected {L/np.sqrt(2*tau1D)*(tau1D + ta

u3D):1.2f}")

11/25/2020 week12a_IntroToGeneRegulation

localhost:8890/nbconvert/html/week12a_IntroToGeneRegulation.ipynb?download=false 8/9

In [3]:

L = 1e4

nmax = 200

target = 0

tau3D = 100

mean_values = []

for tau1D in [10, 20,50, 100, 200, 500, 1000]:

 hop_off = 1/tau1D

 data = []

 for i in range(nmax):

 x0 = np.random.randint(0,L)

 total_time = 0

 cycles = 0

 while x0!=target:

 p = np.random.random()

 if p<hop_off:

 # detach and reattach after time tau3D

 x0 = np.random.randint(0,L)

 total_time += tau3D

 cycles += 1

 else:

 # determine left or right hop

 if p>hop_off + (1-hop_off)*0.5:

 x0 += 1

 else:

 x0 -= 1

 # make sure the chromosome is a circle L+x -> x

 x0 = x0%L

 total_time += 1

 data.append((cycles, total_time))

 data = np.array(data)

 mean_cycles, mean_time = data.mean(axis=0)

 stderr_cycles, stderr_time = data.mean(axis=0)/np.sqrt(nmax-1)

 mean_values.append([tau1D, mean_cycles, mean_time, stderr_cycles, stderr_tim

e])

mean_values = np.array(mean_values)

Average number of cycles: 759.90, expected 707.11

Average time: 151221.62, expected 141421.36

11/25/2020 week12a_IntroToGeneRegulation

localhost:8890/nbconvert/html/week12a_IntroToGeneRegulation.ipynb?download=false 9/9

In [4]:

plt.errorbar(mean_values[:,0], mean_values[:,2], mean_values[:,4])

plt.xlabel(r'τ_{1D}')

plt.ylabel('mean search time')

plt.xscale('log')

a combination of one dimensional and three dimensional diffusion can accellerate the search process.
predicts an optimum of 50/50 1D and 3D search that minimizes local oversampling and time "lost" in the
cytosol
reality is more complicated and additional process likely help binding site search.

Summary
In bacterial gene regulation, a small number of molecules needs to find target sites -- a noisy process
Activators tend to be at lower numbers than repressors
Binding site search is surprisingly fast -- achieved by combined 1D and 3D diffusion

