11/25/2020 week12c_DynamicalSystems

Simple dynamical systems

« dynamic models that relate expression and translation of genes to the current state of the cell

« typically formulated as systems of differential equations (for example one for each gene)

« models can be deterministic or stochastic

« endless scope for complexity (transcription, translation, modifications, nuclear import/export etc...)

Such systems are often modeled with ordinary differential equations or short ODEs that we will now
explore in some more detail.

Systems of ODEs
For a set of variables x; describing the cell (protein, mMRNA concentrations), we can define:
% = fi(xy, 29, ..., 2y, 1)
% = fo(x1,29,...,Zp,t)
d;ct" = fo(T1,29,...,2p,1)
. fi(xl, RN t) describe how rapidly quantity 2 is changing given the state of the cell.

« these function could depend on time ¢ (day/night, other perturbations)

One dimensional dynamical systems

The simplest examples are one-dimensional and independent of time.
dx
—_—— €T
— = f(a)

In the case of gene expression modeling, the function f(LU) typically consists of a production term and a
degradation term:

— =a— fBx

dt

To analyze the qualitative behavior of such systems, consider the following graph of f(:n)

/fw ¥ decraases HQQ \asloc,l_,
feo / /L\ N y - sl

LA
| ' x

X Galroesey f <0

localhost:8890/nbconvert/html/week1l2c_DynamicalSystems.ipynb?download=false 1/5

11/25/2020 week12c_DynamicalSystems

Over time, this results in a dynamic like this:

 _x _A

- = T et
\)_ > LL,Q

= - §
/ ’
+

X
>
|
(
(
f

localhost:8890/nbconvert/html/week1l2c_DynamicalSystems.ipynb?download=false 2/5

11/25/2020 week12c_DynamicalSystems

In [1]:

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

def dxdt(x,t, a, b):
return a - b*x
return a*(l+np.sin(t)) - b*x

a=1

b =20.4

t = np.linspace(0,10,101)
X = np.linspace(-2,6, 101)
X0 =5

make a figure with two subplots

fig, axs = plt.subplots(l,2, figsize=(10,5))
plot the derivative f(x,t) = dxdt(x,t)
axs[0].plot(x, dxdt(x,0, a, b))
axs[0].plot(x, np.zeros like(x), c='k")
axs[0].set xlabel('x")

axs[0].set ylabel('f(x,t)")

plot the solutions of the ODE for different
for x0 in [0,1,2,3,4]:
sol = odeint(dxdt, x0, t, args=(a,b))
axs[1l].plot(t, sol)

axs[1l].set ylabel('x")
axs[1l].set xlabel('t')

Out[1l]:
Text (0.5, 0, 't')

15 4

10 4

05 4

fix.t)
=

0.0 A

-1.0 4

-1.5

localhost:8890/nbconvert/html/week12c_DynamicalSystems.ipynb?download=false

3/5

11/25/2020 week12c_DynamicalSystems

« in one dimensional systems, not many things can happen
« solution either tend to a stable fixed point, or are dragged around by a time dependent forcing.

Two dimensional dynamical systems

Things get a lot more interesting in two dimensions. We'll consider time independent systems like this:

dx
d_tl = fl(iﬁl,iﬁz)
dx
d_t2 = fz(«’lfl,«’Ez)

Again, before solving them numerically, we would like to understand how they behave generically.

Instead of on a line (the x-axis above), the system now lives in a plane (1, x2). There are certain special
places on that plane, where f1(x1, z5) and/or fo(x1,x2) are zero, meaning the variables 1 and/or
don't change. The lines with f;(z1, 23) = 0 and fa(x1, z2) = 0 are called null-clines.

4 Plai) =0

N

localhost:8890/nbconvert/html/week1l2c_DynamicalSystems.ipynb?download=false 4/5

11/25/2020 week12c_DynamicalSystems

fz(\(“’(z) =0

Yop

Dig deeper

» Change the derivative in the code snippet to different functions f(a:, t) and explore the behavior of the

ODE.
» Replace odeint with the forward-Euler algorithm we used previously. Verify that you get the same

answer as before.

In []:

localhost:8890/nbconvert/html/week1l2c_DynamicalSystems.ipynb?download=false 5/5

