
11/25/2020 week12c_DynamicalSystems

localhost:8890/nbconvert/html/week12c_DynamicalSystems.ipynb?download=false 1/5

Simple dynamical systems
dynamic models that relate expression and translation of genes to the current state of the cell
typically formulated as systems of differential equations (for example one for each gene)
models can be deterministic or stochastic
endless scope for complexity (transcription, translation, modifications, nuclear import/export etc...)

Such systems are often modeled with ordinary differential equations or short ODEs that we will now
explore in some more detail.

Systems of ODEs
For a set of variables describing the cell (protein, mRNA concentrations), we can define:

 describe how rapidly quantity is changing given the state of the cell.
these function could depend on time (day/night, other perturbations)

xi
dx1

dt
dx2

dt

⋮
dxn

dt

=

=

=

=

(, , … , , t)f1 x1 x2 xn

(, , … , , t)f2 x1 x2 xn

⋮

(, , … , , t)fn x1 x2 xn

(, … , , t)fi x1 xn i

t

One dimensional dynamical systems
The simplest examples are one-dimensional and independent of time.

In the case of gene expression modeling, the function typically consists of a production term and a
degradation term:

= f(x)
dx

dt

f(x)

= α − βx
dx

dt

To analyze the qualitative behavior of such systems, consider the following graph of :f(x)

11/25/2020 week12c_DynamicalSystems

localhost:8890/nbconvert/html/week12c_DynamicalSystems.ipynb?download=false 2/5

Over time, this results in a dynamic like this:

11/25/2020 week12c_DynamicalSystems

localhost:8890/nbconvert/html/week12c_DynamicalSystems.ipynb?download=false 3/5

In [1]:

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import odeint

def dxdt(x,t, a, b):

return a - b*x

 return a*(1+np.sin(t)) - b*x

a = 1

b = 0.4

t = np.linspace(0,10,101)

x = np.linspace(-2,6, 101)

x0 = 5

make a figure with two subplots

fig, axs = plt.subplots(1,2, figsize=(10,5))

plot the derivative f(x,t) = dxdt(x,t)

axs[0].plot(x, dxdt(x,0, a, b))

axs[0].plot(x, np.zeros_like(x), c='k')

axs[0].set_xlabel('x')

axs[0].set_ylabel('f(x,t)')

plot the solutions of the ODE for different

for x0 in [0,1,2,3,4]:

 sol = odeint(dxdt, x0, t, args=(a,b))

 axs[1].plot(t, sol)

axs[1].set_ylabel('x')

axs[1].set_xlabel('t')

Out[1]:

Text(0.5, 0, 't')

11/25/2020 week12c_DynamicalSystems

localhost:8890/nbconvert/html/week12c_DynamicalSystems.ipynb?download=false 4/5

in one dimensional systems, not many things can happen
solution either tend to a stable fixed point, or are dragged around by a time dependent forcing.

Two dimensional dynamical systems
Things get a lot more interesting in two dimensions. We'll consider time independent systems like this:

Again, before solving them numerically, we would like to understand how they behave generically.

Instead of on a line (the -axis above), the system now lives in a plane (). There are certain special
places on that plane, where and/or are zero, meaning the variables and/or
don't change. The lines with and are called null-clines.

= (,)
dx1

dt
f1 x1 x2

= (,)
dx2

dt
f2 x1 x2

x ,x1 x2
(,)f1 x1 x2 (,)f2 x1 x2 x1 x2
(,) = 0f1 x1 x2 (,) = 0f2 x1 x2

11/25/2020 week12c_DynamicalSystems

localhost:8890/nbconvert/html/week12c_DynamicalSystems.ipynb?download=false 5/5

Dig deeper
Change the derivative in the code snippet to different functions and explore the behavior of the
ODE.
Replace odeint with the forward-Euler algorithm we used previously. Verify that you get the same
answer as before.

f(x, t)

In []:

