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Simple model of de-mixing transitions
Phase transitions of the type we are considering here are generally driven by the competition between
Energy and Entropy. Entropy favors a disordered state where all components are thoroughly mixed. The
minimal energy state is the state were as many favorable interactions between molecules are realized as
possible, which favors segregation. But why does this competition result in sharp phase transitions?

To get some understanding of such transitions, it is instructive to consider a very simple model with two
molecular species  and  arranged on a lattice:

Illustration of multi-component mixtures. From Brangwynne et al. 2015.

We will calculate the free energy of the such a model and ask whether mixture is stable towards phase
separation.
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where , , and  are the number of times the respective neighbor relations are observed.

upp usp

uss

H = + +nssuss nsp usp nppupp

nss nsp npp

To proceed, we will assume a homogenous mixture where a fraction  of lattice sites are occupied by  and 
 by  in a random fashion. For each lattice site, there are  connections (each connection

contributes to two sites) and the we therefore have
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In the second line, we have rearranged the terms slighly to emphasize the role of contributions:

 parameterizes the difference between hetero- and homotypic interactions. This
term is proportional to the number of heterotypic interactions .

 parameterizes how much more favorable  interactions are then  interactions. This
term is only proportional to fraction of .

the remainder is constant offset.
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In [5]:

import numpy as np 

import matplotlib.pyplot as plt 

upp=-.02

uss=0 

usp=0.5 

z=8 

phi = np.linspace(0,1,101) 

h = z*((1-phi)*phi*(2*usp-uss-upp) + phi*(upp-uss) + uss)/2 

plt.plot(phi, h) 

plt.xlabel(f'fraction $\phi$') 

plt.ylabel('enthalpy') 

The next ingredient that we need is the entropy, i.e. the logarithm of the number of states available to the
system. The number of ways to place  molecules on a lattice of size  is

(Entropy is only defined up to an additive constant and has units of inverse temperature.)

Nϕ N

=e(S+c)/k N!

(Nϕ)!(N(1 − ϕ))!

We will simplify this expression using Stirling's approximation for factorials  and findlog n! ≈ n log n − n

S + c = kN [log N − ϕ log(ϕN) − (1 − ϕ) log((1 − ϕ)N)]

= −kN(ϕ log(ϕ) + (1 − ϕ) log(1 − ϕ))

Out[5]:

Text(0, 0.5, 'enthalpy')
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The free energy  is then given byF = H − TS

= [ϕ(1 − ϕ)(2 − − ) + ϕ( − )] + kT [ϕ log(ϕ) + (1 − ϕ) log(1 − ϕ)]
F
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In [6]:

kT = 1 

s = phi*np.log(phi+1e-16) + (1-phi)*np.log(1-phi+1e-16) 

f = h + kT*s 

plt.plot(phi,f) 

plt.xlabel(f'fraction $\phi$') 

plt.ylabel('free energy') 

Out[6]:

Text(0, 0.5, 'free energy')
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The free energy has multiple minima and is curved up-wards in some regions! What does this imply?

The mixture at  can lower its free energy by segregating into two phases with density  and .

In this example, the sum of the free energies of a fraction  at  and  at  is clearly lower than the
original . The new densities have to obey the equation  since the total amount
of protein and solvent has to stay constant.

ϕ ϕ1 ϕ2

α ϕ1 1 − α ϕ2

ϕ0 = α + (1 − α)ϕ0 ϕ1 ϕ2
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A quick consideration shows that such a separation in high and low density phases is always possible when
the curvature of the free energy is negative:

The average  on a line connecting  and  is always below the curve in regions where the
curvature of  is negative. Hence any separation into two phases is favorable. The opposite is true for
positive curvature.

F ( , )ϕ1 F1 ( , )ϕ2 F2

F



11/29/2020 week13b_SimpleModelOfPhaseTransitions

localhost:8888/nbconvert/html/week13b_SimpleModelOfPhaseTransitions.ipynb?download=false 6/6

In [7]:

for usp in np.linspace(0,0.5,10): 

   h = z*((1-phi)*phi*(2*usp-uss-upp) + phi*(upp-uss) + uss)/2 

   s = phi*np.log(phi+1e-16) + (1-phi)*np.log(1-phi+1e-16) 

   f = h + kT*s 

   curv = np.zeros_like(f) 

   curv[1:-1] = f[2:] + f[:-2] - 2*f[1:-1] 

    

   plt.plot(phi, f, c='C0') 

   plt.plot(phi[curv<0], f[curv<0], c='C1') 

    

plt.xlabel(f'fraction $\phi$') 

plt.ylabel('free energy') 

With increasing repulsion between  and , the region of instability becomes larger and larger.s p

It is common that changes of a parameter could move a configuration from a stable to an unstable one:

in physical systems: Temperature or pressure
in biology: concentrations, modifications, etc

Dig deeper
Why do the terms of the free energy that are linear in  don't matter for stability?
What are the properties of the free energy at  or . Is separation into pure phases every
possible? If not, why not?

ϕ

ϕ = 0 ϕ = 1

Out[7]:

Text(0, 0.5, 'free energy')


