Target search on DNA

- 5x10^6 bp in \(\mu m^2 \)
- Specific binding site
- Low copy number TF (10 copies of lac repressor)

Diffusion in 3D

- General problem: diffusion limited rates
- Upper limit on any enzymatic reaction

\[
\tilde{\kappa} \sim K [S][E]
\]

- Relative diffusion constant

\[
D = D_A + D_B \quad \left[\frac{\mu m^2}{s} \right]
\]

- Radii are important (they limit each other if \(1/15 < r_A + r_B \))

- \(\kappa \) has units \(\frac{length^3}{s} \)

\[
\kappa \sim D(r_A + r_B)
\]

\(\rightarrow \) Diffusion limited rate of perfectly absorbing spheres

\[
\kappa = 4\pi \left(D_A + D_B \right) (r_A + r_B)
\]
Absorbing sphere

- Isotropic \(\Rightarrow \) only \(\frac{1}{r^2} \) matters

- We are looking for a steady, constant flux solution

\[
C = D r^2 \frac{\partial P(r)}{\partial r} \Rightarrow \frac{\partial P}{\partial r} = \frac{C}{D r^2}
\]

\[
\Rightarrow P(r) = \frac{x}{r} \left(1 - \frac{r_A + r_B}{r} \right)
\]

- The gradient at the boundary is \(\frac{x}{r_A + r_B} \)

- Multiplying by the surface area, we have

\[
12 = 4\pi (r_A + r_B)^2 \frac{D}{r_A + r_B} = 4\pi D (r_A + r_B)
\]

- This rate is an upper bound; geometric constraints reduce it.
 (Orientation, smaller binding surface)

- Electrostatic attraction makes these problems often less severe
Diffusion limited binding site search

- DNA doesn't move much: \(D_{\text{DNA}} + D_{\text{TF}} = D_{\text{TF}} = 100 \, \mu m^2 / s \) (in vitro, in vivo \(\frac{1}{3} \))

- reactive length: one base pair precision
 \(r = 0.3 \, nm \)

 \[K = \frac{4D_{\text{TF}} \times 100 \times 0.3 \times 10^{-9} \, \mu m^2 / s}{1} \approx 0.4 \, \mu m^2 / s \approx 2 \times 10^8 \, M^{-1} \cdot s^{-1} \]

- measurements in vitro: \(K \approx 10^{10} / M \)

- ~100-fold discrepancy that puzzled Abio Sols
 → discovery of new mechanism and search paradigms

Combined 1D/2D search

- TF binds unspecifically to DNA
- scans local sequence for binding site

- distance searched

 \[l = \sqrt{2D_{\text{tot}}t} \quad (\text{max extend 2-fold higher}) \]

- initially fast search, but increasingly redundant

- \(D_{1D} \approx 10^5 - 10^6 \, \frac{bp^2}{s} = 0.01 - 0.1 \, \mu m^2 / s \)

- much slower than 3D

 \[10^6 \approx \sqrt{2D_{1D}} \Rightarrow t \approx 10^6 \, s \quad \text{way too long} \]
What is search was combined 15/30?

- time to find sick
 \[t_s = \sum_{i=1}^L (\tilde{\tau}_{i,10} + \tilde{\tau}_{i,30}) \]
 \[\text{time on DNA} \quad \text{time in solution} \]

\[\overline{12} = \frac{L}{\bar{e}} \]
\[\text{genome length} \]
\[\text{length searched in one round} \]

\[e = \sqrt{2D_{10}} \sqrt{\tilde{\tau}_{10}} \]

\[t_s = 12 (\sqrt{\tilde{\tau}_{10}} + \sqrt{\tilde{\tau}_{30}}) = \frac{L}{\sqrt{2D_{10} \tilde{\tau}_{10}}} \left(\sqrt{\tilde{\tau}_{10}} + \sqrt{\tilde{\tau}_{30}} \right) \]
\[= \frac{L}{\sqrt{2D_{10}}} \left(\sqrt{\tilde{\tau}_{10}} + \sqrt{\tilde{\tau}_{30}} \right) \]

\[\frac{\partial t_s}{\partial \tilde{\tau}_{10}} = \frac{L}{2 \sqrt{2D_{10}}} \left(\frac{1}{\sqrt{\tilde{\tau}_{10}}} + \frac{\sqrt{\tilde{\tau}_{30}}}{\tilde{\tau}_{10}} \right) = 0 \]

\[\Rightarrow \overline{\tilde{\tau}_{10}} = \overline{\tilde{\tau}_{30}} \Rightarrow \text{equal time?} \]
Why is there an optimum?

\[\tau \rightarrow 0 \quad \rightarrow \text{pure 3D search} \]

\[\tau \rightarrow 0 \quad \rightarrow \text{pure 1D search} \]

Intrasegment transfer

- optimal is 50/50, but TFs are often unspecifically associated with DNA \(> 90\% \)
- possible explanation: intrasegment transfer

\[\infty \]

- distant DNA pieces come close in 3D
- direct transfers from one to another reduces redundancy of local search
- DNA contacts have a length distribution of \(r \sim r^{-2} \)