Evolution of HIV
- Chimp → human transmission around 1900 gave rise to HIV-1 group M
- ~100 million infected people since
- subtypes differ at 10-20% of their genome
- HIV-1 evolves ~0.1% per year
image: Sharp and Hahn, CSH Persp. Med.
HIV infection
- $10^8$ cells are infected every day
- the virus repeatedly escapes immune recognition
- integrates into T-cells as latent provirus
image: wikipedia
HIV-1 evolution within one individual
silouhette: clipartfest.com, Zanini at al, 2015. Collaboration with Jan Albert and his group
Population sequencing to track all mutations above 1%
- diverge at 0.1-1% per year
- almost full genomes coverage in 10 patients
- full data set at hiv.tuebingen.mpg.de
Zanini et al, eLife, 2015
Diversity and rates of change
- envelope changes fastest, enzymes slowest
- identical rate of synonymous evolution
- diversity saturates where evolution is fast
- synonymous mutations stay at low frequency
Zanini et al, eLife, 2015
Sequences record the spread of pathogens
The resolution is limited by the number of mutations!
images by Trevor Bedford
Human seasonal influenza viruses
slide by Trevor Bedford
- Influenza virus evolves to avoid human immunity
- Vaccines need frequent updates
Beyond tracking: can we predict?
Competition between different viral variants
RN, Annual Reviews, 2013; Desai & Fisher; Brunet & Derride; Kessler & Levine
Predicting evolution
Given the branching pattern:
- can we predict fitness?
- pick the closest relative of the future?
RN, Russell, Shraiman, eLife, 2014
Fitness inference from trees
$$P(\mathbf{x}|T) = \frac{1}{Z(T)} p_0(x_0) \prod_{i=0}^{n_{int}} g(x_{i_1}, t_{i_1}| x_i, t_i)g(x_{i_2}, t_{i_2}| x_i, t_i)$$
RN, Russell, Shraiman, eLife, 2014
Prediction of the dominating H3N2 influenza strain
- no influenza specific input
- how can the model be improved? (see model by Luksza & Laessig)
- what other context might this apply?
RN, Russell, Shraiman, eLife, 2014
nextstrain.org
- integrate data from many different sources
- analyze those data in near real time
- disseminate results in an intuitive yet informative way
- provide actionable insights
Acknowledgments
- Fabio Zanini
- Jan Albert
- Johanna Brodin
- Christa Lanz
- Göran Bratt
- Lina Thebo
- Vadim Puller
Influenza and Theory acknowledgments
- Boris Shraiman
- Colin Russell
- Trevor Bedford
- Oskar Hallatschek
nextstrain.org
- Trevor Bedford
- Colin Megill
- Pavel Sagulenko
- Sidney Bell
- James Hadfield
- Wei Ding