Human seasonal influenza viruses
slide by Trevor Bedford
- Influenza virus evolves to avoid human immunity
- Vaccines need frequent updates
Beyond tracking: can we predict?
Clonal interference and traveling waves
RN, Annual Reviews, 2013; Desai & Fisher; Brunet & Derrida; Kessler & Levine
Theoretical framework for virus evolution -- population genetics
evolutionary processes ↔ trees ↔ genetic diversity
Typical tree
Bolthausen-Sznitman Coalescent
RN, Hallatschek, PNAS, 2013; see also Brunet and Derrida, PRE, 2007; Desai, Walczak, Fisher, Genetics, 2013
Bursts in a tree ↔ high fitness genotypes
Predicting evolution
Given the branching pattern:
- can we predict fitness?
- pick the closest relative of the future?
RN, Russell, Shraiman, eLife, 2014
Fitness inference from trees
$$P(\mathbf{x}|T) = \frac{1}{Z(T)} p_0(x_0) \prod_{i=0}^{n_{int}} g(x_{i_1}, t_{i_1}| x_i, t_i)g(x_{i_2}, t_{i_2}| x_i, t_i)$$
RN, Russell, Shraiman, eLife, 2014
Validate on simulation data
- simulate evolution
- sample sequences
- reconstruct trees
- infer fitness
- predict ancestor of future
- compare to truth
RN, Russell, Shraiman, eLife, 2014
Validation on simulated data
RN, Russell, Shraiman, eLife, 2014
Validation on simulated data
RN, Russell, Shraiman, eLife, 2014
Prediction of the dominating H3N2 influenza strain
- no influenza specific input
- how can the model be improved? (see model by Luksza & Laessig)
- what other context might this apply?
RN, Russell, Shraiman, eLife, 2014
Hemagglutination Inhibition assays
Slide by Trevor Bedford
HI data sets
- Long list of distances between sera and viruses
- Tables are sparse, only close by pairs
- Structure of space is not immediately clear
- MDS in 2 or 3 dimensions
Smith et al, Science 2002
Slide by Trevor Bedford
Integrating antigenic and molecular evolution
- $H_{a\beta} = v_a + p_\beta + \sum_{i\in (a,b)} d_i$
- each branch contributes $d_i$ to antigenic distance
- sparse solution for $d_i$ through $l_1$ regularization
- related model where $d_i$ are associated with substitutions
RN et al, PNAS, 2016
Integrating antigenic and molecular evolution
- MDS: $(d+1)$ parameters per virus
- Tree model: $2$ parameters per virus
- Sparse solution
→ identify branches or substitutions that cause titer drop
RN et al, PNAS, 2016
HI distances on the phylogenetic tree
NextStrain architecture
Using treetime to rapidly compute timetrees
HIV-1 evolution within one individual
silouhette: clipartfest.com, Zanini at al, 2015. Collaboration with Jan Albert and his group
Population sequencing to track all mutations above 1%
- diverge at 0.1-1% per year
- almost full genomes coverage in 10 patients
- full data set at hiv.tuebingen.mpg.de
Zanini et al, eLife, 2015
Inference of fitness costs
- mutation away from preferred state with rate $\mu$
- selection against non-preferred state with strength $s$
- variant frequency dynamics: $\frac{d x}{dt} = \mu -s x $
- equilibrium frequency: $\bar{x} = \mu/s $
- fitness cost: $s = \mu/\bar{x}$
Fitness landscape of HIV-1
Zanini et al, Virus Evolution, 2017
Selection on RNA structures and regulatory sites
Zanini et al, Virus Evolution, 2017
T-cell turnover is fast in untreated infection
- latent HIV → barcode of a T-cell lineage
- all latent integrated virus derives from late infection
- untreated: T-cell lineages are short lived
- on therapy: T-cell clones live decades
Brodin et al, eLife, 2016
Summary
- RNA virus evolution can be observed directly
- Rapidly adapting population require new population genetic models
- Those model can be used to infer fit clades
- Future influenza population can be anticipated
- Automated real-time analysis can help fight the spread of disease
Influenza and Theory acknowledgments
- Boris Shraiman
- Colin Russell
- Trevor Bedford
- Oskar Hallatschek
nextstrain.org
- Trevor Bedford
- Colin Megill
- Pavel Sagulenko
- Sidney Bell
- James Hadfield
- Wei Ding
Acknowledgments
- Fabio Zanini
- Jan Albert
- Johanna Brodin
- Christa Lanz
- Göran Bratt
- Lina Thebo
- Vadim Puller