Modeling and predicting RNA virus evolution


Richard Neher
Biozentrum & SIB, University of Basel


slides at neherlab.org/202010_KNAW_long.html

Human seasonal influenza viruses

slide by Trevor Bedford

Positive tests for influenza in the USA by week

Data by the US CDC


  • Influenza viruses evolve to avoid human immunity
  • Vaccines need frequent updates

Influenza B viruses have split into two lineages

Le Yan, RN, Shraiman, bioRxiv, 2018

GISRS and GISAID -- Influenza virus surveillance

  • comprehensive coverage of the world
  • timely sharing of data through GISAID -- often within 2-3 weeks of sampling
  • hundreds of sequences per week (in peak months)
→ requires continuous analysis and easy dissemination
→ interpretable and intuitive visualization

nextflu.org

joint project with Trevor Bedford & his lab

Beyond tracking: can we predict?

Fitness variation in rapidly adapting populations

  • Speed of adaptation is logarithmic in population size
  • Environment (fitness landscape), not mutation supply, determines adaptation
  • Different models have universal emerging properties
RN, Annual Reviews, 2013; Desai & Fisher; Brunet & Derride; Kessler & Levine

Neutral/Kingman coalescent

strong selection

Bolthausen-Sznitman Coalescent

RN, Hallatschek, PNAS, 2013; see also Brunet and Derrida, PRE, 2007; Desai, Walczak, Fisher, Genetics, 2013

Burst in the tree ↔ high fitness

Predicting evolution

Given the branching pattern:

  • can we predict fitness?
  • pick the closest relative of the future?
RN, Russell, Shraiman, eLife, 2014

Fitness inference from trees

$$P(\mathbf{x}|T) = \frac{1}{Z(T)} p_0(x_0) \prod_{i=0}^{n_{int}} g(x_{i_1}, t_{i_1}| x_i, t_i)g(x_{i_2}, t_{i_2}| x_i, t_i)$$
RN, Russell, Shraiman, eLife, 2014

Simple heuristic: Local branching index

Validate on simulation data

  • simulate evolution
  • sample sequences
  • reconstruct trees
  • infer fitness
  • predict ancestor of future
  • compare to truth
RN, Russell, Shraiman, eLife, 2014

Validation on simulated data

RN, Russell, Shraiman, eLife, 2014

Validation on simulated data

RN, Russell, Shraiman, eLife, 2014

Prediction of the dominating H3N2 influenza strain

  • no influenza specific input
  • how can the model be improved? (see model by Luksza & Laessig)
  • what other context might this apply?
RN, Russell, Shraiman, eLife, 2014

Limits of predictability

Barrat-Charlaix et al, 2020

Limits of predictability

Barrat-Charlaix et al, 2020

Limits of predictability

Barrat-Charlaix et al, 2020

Influenza and Theory acknowledgments

  • Boris Shraiman
  • Colin Russell
  • Trevor Bedford
  • Pierre Barrat
  • Oskar Hallatschek

  • All the NICs and WHO CCs that provide influenza sequence data
  • The WHO CCs in London and Atlanta for providing titer data