Oliver Ratmann, Emma B. Hodcroft, Michael Pickles et al.
Molecular biology and evolution, vol. 34, 185--203, 2017
10.1093/molbev/msw217
Abstract
Viral phylogenetic methods contribute to understanding how HIV spreads in populations, and thereby help guide the design of prevention interventions. So far, most analyses have been applied to well-sampled concentrated HIV-1 epidemics in wealthy countries. To direct the use of phylogenetic tools to where the impact of HIV-1 is greatest, the Phylogenetics And Networks for Generalized HIV Epidemics in Africa (PANGEA-HIV) consortium generates full-genome viral sequences from across sub-Saharan Africa. Analyzing these data presents new challenges, since epidemics are principally driven by heterosexual transmission and a smaller fraction of cases is sampled. Here, we show that viral phylogenetic tools can be adapted and used to estimate epidemiological quantities of central importance to